resource/model_param/randomforest_v1.py (9 lines of code) (raw):

model_type = "RANDOMFOREST" model_param_dict = { # ==== preprocess: normalize each feature ==== # 'norm_type':'none', # default: do nothing - won't matter to random forest # ==== postprocess: clip final quality score # 'score_clip':None, # default: do nothing 'score_clip':[0.0, 100.0], # clip to within [0, 100] # ==== randomforest parameters ==== # 'n_estimators':10, # default 'criterion':'mse', # default 'max_depth':None, # default # 'random_state':None, # default: random 'random_state':0, # make result deterministic }