resource/model_param/randomforest_v1.py (9 lines of code) (raw):
model_type = "RANDOMFOREST"
model_param_dict = {
# ==== preprocess: normalize each feature ==== #
'norm_type':'none', # default: do nothing - won't matter to random forest
# ==== postprocess: clip final quality score
# 'score_clip':None, # default: do nothing
'score_clip':[0.0, 100.0], # clip to within [0, 100]
# ==== randomforest parameters ==== #
'n_estimators':10, # default
'criterion':'mse', # default
'max_depth':None, # default
# 'random_state':None, # default: random
'random_state':0, # make result deterministic
}