resource/param/vmaf_v7.2_bootstrap.py (18 lines of code) (raw):

feature_dict = { 'VMAF_feature': ['vif_scale0', 'vif_scale1', 'vif_scale2', 'vif_scale3', 'adm_scale0', 'adm_scale1', 'adm_scale2', 'adm_scale3', 'motion'], } model_type = "BOOTSTRAP_LIBSVMNUSVR" model_param_dict = { # ==== preprocess: normalize each feature ==== # # 'norm_type': 'none', # default: do nothing # 'norm_type': 'clip_0to1', # rescale to within [0, 1] # 'norm_type': 'clip_minus1to1', # rescale to within [-1, 1] # 'norm_type': 'normalize', # rescale to mean zero and std one 'norm_type': 'custom_clip_0to1', # linearly map the range specified to [0, 1]; if unspecified, use clip_0to1 'custom_clip_0to1_map': { 'VMAF_feature_adm_scale0_score': [0.5, 1.0], }, # ==== postprocess: clip final quality score ==== # # 'score_clip': None, # default: do nothing 'score_clip': [0.0, 100.0], # clip to within [0, 100] # ==== postprocess: transform final quality score ==== # 'score_transform': {'p0':1.70674692, 'p1':1.72643844, 'p2':-0.00705305, 'out_gte_in':'true'}, # laptop vs. mobile transform # ==== libsvmnusvr parameters ==== # 'gamma': 0.03, 'C': 3.0, 'nu': 0.9, # ==== bootstrap parameters ==== # 'num_models': 101, # this leads to 100 bootstrapped models being trained }