in lib/normalize_ewma.py [0:0]
def forward(self, input_vector):
# Make sure input is float32
input_vector = input_vector.to(torch.float)
if self.training:
# Detach input before adding it to running means to avoid backpropping through it on
# subsequent batches.
detached_input = input_vector.detach()
batch_mean = detached_input.mean(dim=tuple(range(self.norm_axes)))
batch_sq_mean = (detached_input ** 2).mean(dim=tuple(range(self.norm_axes)))
if self.per_element_update:
batch_size = np.prod(detached_input.size()[: self.norm_axes])
weight = self.beta ** batch_size
else:
weight = self.beta
self.running_mean.mul_(weight).add_(batch_mean * (1.0 - weight))
self.running_mean_sq.mul_(weight).add_(batch_sq_mean * (1.0 - weight))
self.debiasing_term.mul_(weight).add_(1.0 * (1.0 - weight))
mean, var = self.running_mean_var()
return (input_vector - mean[(None,) * self.norm_axes]) / torch.sqrt(var)[(None,) * self.norm_axes]