lib/xf.py (366 lines of code) (raw):

""" Implementation of transformer and reshaping-based sparse transformer """ import functools import math import torch as th from torch import nn from torch.nn import functional as F from lib import misc, mlp from lib import torch_util as tu from lib import util SENTINEL = 0.1337 def attention( Q_bte, K_bTe, V_bTe, dtype, mask=True, extra_btT=None, maxlen=None, check_sentinel=False, use_muP_factor=False, ): """ performs softmax(Q*K)*V operation t : output (write) time axis, possibly size=1 for just the last timestep T : input (read) time axis t < T is OK 'check_sentinel' is used when you want to make it impossible to attend to certain keys. All keys where every value is equal to the constant SENTINEL will be ignored. Currently this is only used by StridedAttn. """ assert Q_bte.dtype == K_bTe.dtype == dtype, f"{Q_bte.dtype}, {K_bTe.dtype}, {dtype} must all match" e = Q_bte.shape[2] if check_sentinel: invalid = (K_bTe == SENTINEL).int().sum(dim=-1) == e invalid = misc.reshape(invalid, "b, T", "b, 1, T") if isinstance(mask, th.Tensor): bias = (~mask).float() * -1e9 elif mask: bias = get_attn_bias_cached(Q_bte.shape[1], K_bTe.shape[1], maxlen=maxlen, device=Q_bte.device, dtype=th.float32) else: bias = Q_bte.new_zeros((), dtype=th.float32) if extra_btT is not None: bias = bias + extra_btT # Equivalent to bias + (1 / math.sqrt(e)) * th.einsum("bte,bpe->btp", Q_bte, K_bte) # but faster: logit_btT = th.baddbmm( bias, Q_bte.float(), K_bTe.float().transpose(-1, -2), alpha=(1 / e) if use_muP_factor else (1 / math.sqrt(e)), ) if check_sentinel: logit_btT = logit_btT - 1e9 * invalid.float() W_btT = th.softmax(logit_btT, dim=2).to(dtype) if callable(V_bTe): # This is used by the sharded video model to defer waiting on # the broadcast of the values until they're needed V_bTe = V_bTe() # th.einsum only lets you use lowercase letters, so 'p' for 'past' # means 'T' A_bte = th.einsum("btp,bpe->bte", W_btT, V_bTe) return A_bte class Attn: """ Defines an attention mechanism All the mechanisms here can be defined by two operations: 1. preprocessing Q,K,V,R[=relative attention query] to move axes from embedding dimension to batch dimension, and possibly doing shifts. 2. postprocessing the final result to move axes back to embedding axis. """ def __init__(self, mask, maxlen): self.mask = mask self.maxlen = maxlen def preproc_qkv(self, Q_bte, K_bte, V_bte): raise NotImplementedError def preproc_r(self, R_btn): raise NotImplementedError def split_heads(x_bte, h): b, t, e = x_bte.shape assert e % h == 0, "Embsize must be divisible by number of heads" q = e // h x_bthq = x_bte.reshape((b, t, h, q)) x_bhtq = misc.transpose(x_bthq, "bthq", "bhtq") x_Btq = x_bhtq.reshape((b * h, t, q)) return x_Btq class All2All(Attn): def __init__(self, nhead, maxlen, mask=True, head_dim=None): super().__init__(mask=mask, maxlen=maxlen) assert (nhead is None) != (head_dim is None), "exactly one of nhead and head_dim must be specified" self.h = nhead self.head_dim = head_dim def preproc_qkv(self, *xs): q = xs[0].shape[-1] for x in xs: assert x.shape[-1] == q, "embedding dimensions do not match" h = self.h or misc.exact_div(q, self.head_dim) postproc = functools.partial(self.postproc_a, h=h) return (postproc, *tuple(split_heads(x, h) for x in xs)) def preproc_r(self, R_btn): _, ret = self.preproc_qkv(R_btn) return ret def postproc_a(self, A_Btq, h): B, t, q = A_Btq.shape b = B // h A_bhtq = A_Btq.reshape((b, h, t, q)) A_bthq = misc.transpose(A_bhtq, "bhtq", "bthq") A_bte = A_bthq.reshape((b, t, h * q)) return A_bte def _required_padding(dim, target_div): if dim % target_div == 0: return 0 else: return target_div - dim % target_div class StridedAttn(Attn): def __init__(self, nhead, stride, maxlen, mask=True): super().__init__(mask=mask, maxlen=maxlen) self.h = nhead self.stride = stride def _preproc(self, x, name, Q_t=None, Q_pad=None): x, undo = misc.reshape_undo(x, "b, t*stride, e", "b, 1, t, stride*e", stride=self.stride) if name == "Q": Q_pad = _required_padding(x.shape[2], self.maxlen) original_t = x.shape[2] x = F.pad(x, (0, 0, 0, Q_pad), value=SENTINEL) undo = misc.compose_undo(undo, lambda x: x[:, :, :original_t]) if name == "Q": Q_t = x.shape[2] assert Q_t % self.maxlen == 0, f"{Q_t} % {self.maxlen} != 0" else: required_len = Q_t + self.maxlen if x.shape[2] < required_len: x = F.pad(x, (0, 0, required_len - x.shape[2], 0), value=SENTINEL) assert x.shape[2] >= required_len back = x[:, :, -Q_t - self.maxlen : -self.maxlen] front = x[:, :, -Q_t:] x = th.cat([back, front], dim=1) _, _, t, _ = x.shape assert t == Q_t, f"{t} != {Q_t}" x, undo = misc.reshape_undo( x, "b, pad_shift, t*maxlen, stride*h*q", "b, pad_shift, t, maxlen, stride, h, q", maxlen=self.maxlen, h=self.h, stride=self.stride, undo=undo, ) x, undo = misc.transpose_undo(x, "bptmshq", "bthspmq", undo=undo) x, undo = misc.reshape_undo( x, "b, t, h, stride, pad_shift, maxlen, q", "b*t*h*stride, pad_shift*maxlen, q", undo=undo, ) if name == "Q": return x, undo, Q_t, Q_pad else: return x def preproc_qkv(self, Q_bte, K_bte, V_bte): pad = _required_padding(Q_bte.shape[1], self.stride) if pad: Q_bte = F.pad(Q_bte, (0, 0, 0, pad), value=SENTINEL) K_bte = F.pad(K_bte, (0, 0, 0, pad), value=SENTINEL) if K_bte is not None else None V_bte = F.pad(V_bte, (0, 0, 0, pad), value=SENTINEL) if V_bte is not None else None undo = lambda x, pad=pad: x[:, :-pad] else: undo = None if K_bte is not None: pad = _required_padding(K_bte.shape[1], self.stride) if pad: K_bte = F.pad(K_bte, (0, 0, pad, 0), value=SENTINEL) V_bte = F.pad(V_bte, (0, 0, pad, 0), value=SENTINEL) assert Q_bte.shape[1] % self.stride == 0 assert K_bte is None or K_bte.shape[1] % self.stride == 0 assert V_bte is None or V_bte.shape[1] % self.stride == 0 Q, postproc, Q_t, Q_pad = self._preproc(Q_bte, "Q") postproc = misc.compose_undo(undo, postproc) return ( postproc, Q, self._preproc(K_bte, "K", Q_t=Q_t, Q_pad=Q_pad) if K_bte is not None else None, self._preproc(V_bte, "V", Q_t=Q_t, Q_pad=Q_pad) if V_bte is not None else None, ) def preproc_r(self, R_bte): _, R, _, _ = self.preproc_qkv(R_bte, None, None) return R Q_SCALE = 0.1 K_SCALE = 0.2 V_SCALE = 1.0 PROJ_SCALE = 1.0 MLP0_SCALE = 1.0 MLP1_SCALE = 1.0 R_SCALE = 0.1 B_SCALE = 0.2 class AttentionLayerBase(nn.Module): def __init__( self, *, attn, scale, x_size, c_size, qk_size, v_size, dtype, relattn=False, seqlens=None, separate=False, ): super().__init__() dtype = tu.parse_dtype(dtype) self.attn = attn self.x_size = x_size self.c_size = c_size s = math.sqrt(scale) separgs = dict(seqlens=seqlens, separate=separate) self.q_layer = MultiscaleLinear(x_size, qk_size, name="q", scale=Q_SCALE, dtype=dtype, **separgs) self.k_layer = MultiscaleLinear(c_size, qk_size, name="k", scale=K_SCALE, bias=False, dtype=dtype, **separgs) self.v_layer = MultiscaleLinear(c_size, v_size, name="v", scale=V_SCALE * s, bias=False, dtype=dtype, **separgs) self.proj_layer = MultiscaleLinear(v_size, x_size, name="proj", scale=PROJ_SCALE * s, dtype=dtype, **separgs) self.relattn = relattn maxlen = attn.maxlen assert maxlen > 0 or not attn.mask if self.relattn: nbasis = 10 self.r_layer = tu.NormedLinear(x_size, nbasis * attn.h, scale=R_SCALE, dtype=dtype) self.b_nd = nn.Parameter(th.randn(nbasis, maxlen) * B_SCALE) self.maxlen = maxlen self.dtype = dtype def relattn_logits(self, X_bte, T): R_btn = self.r_layer(X_bte).float() R_btn = self.attn.preproc_r(R_btn) t = R_btn.shape[1] D_ntT = util.bandify(self.b_nd, t, T) extra_btT = th.einsum("btn,ntp->btp", R_btn, D_ntT) return extra_btT def quick_gelu(x): return x * th.sigmoid(1.702 * x) def act(actname, x): if actname == "relu": return F.relu(x) elif actname == "gelu": return quick_gelu(x) elif actname == "none": return x else: raise NotImplementedError(actname) class SelfAttentionLayer(AttentionLayerBase): """ Residual attention layer that takes a single tensor x and has it attend to itself Has the form output = x + f(x) """ def __init__( self, x_size, attn, scale, dtype="float32", norm="layer", cache_keep_len=None, relattn=False, log_scope="sa", use_muP_factor=False, **kwargs, ): super().__init__( x_size=x_size, c_size=x_size, qk_size=x_size, v_size=x_size, attn=attn, scale=scale, relattn=relattn, dtype=dtype, **kwargs, ) self.ln_x = util.get_norm(norm, x_size, dtype=dtype) if cache_keep_len is None: if hasattr(attn, "cache_keep_len"): cache_keep_len = attn.cache_keep_len else: if isinstance(attn, StridedAttn): stride = attn.stride else: stride = 1 cache_keep_len = stride * attn.maxlen self.cache_keep_len = cache_keep_len self.log_scope = log_scope self.use_muP_factor = use_muP_factor def residual(self, X_bte, state): X_bte = self.ln_x(X_bte) Q_bte = self.q_layer(X_bte) K_bte = self.k_layer(X_bte) V_bte = self.v_layer(X_bte) if state: state, K_bte, V_bte = self.update_state(state, K_bte, V_bte) postproc_closure, Q_bte, K_bte, V_bte = self.attn.preproc_qkv(Q_bte, K_bte, V_bte) extra_btT = self.relattn_logits(X_bte, K_bte.shape[1]) if self.relattn else None A_bte = attention( Q_bte, K_bte, V_bte, mask=self.attn.mask, extra_btT=extra_btT, maxlen=self.maxlen, dtype=self.dtype, check_sentinel=isinstance(self.attn, StridedAttn), use_muP_factor=self.use_muP_factor, ) A_bte = postproc_closure(A_bte) Aproj_bte = self.proj_layer(A_bte) return Aproj_bte, state def forward(self, X_bte, state): R_bte, state = self.residual(X_bte, state) return X_bte + R_bte, state def stateless_forward(self, X_bte): out_bte, _state = self.forward(X_bte, None) return out_bte def update_state(self, state, K_bte, V_bte): def append(prev, new): """ Given `prev` keys from cache, and `new` keys, returns (cache, full), where - cache goes into the output state, length chosen so that on the next timestep, there are enough cached timesteps to get the full context of lenth self.maxlen. - full is used for the current forward pass, with length chosen so that the first timestep new[:, 0] gets to see a context of self.maxlen. """ tprev = prev.shape[1] startfull = max(tprev - self.cache_keep_len, 0) full = th.cat([prev[:, startfull:], new], dim=1) outstate = full[:, max(full.shape[1] - (self.cache_keep_len), 0) :] # To see that the preceding slicing is correct, consider the case # that maxlen==1. Then `full` only consists of `new`, and # `outstate` is empty return outstate, full instate_K, instate_V = state outstate_K, K_bte = append(instate_K, K_bte) outstate_V, V_bte = append(instate_V, V_bte) assert outstate_K.shape[-2] <= self.cache_keep_len return (outstate_K, outstate_V), K_bte, V_bte def initial_state(self, batchsize, initial_T=0): return ( tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype), tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype), ) def empty_state(self): return None class PointwiseLayer(nn.Module): """ Residual MLP applied at each timestep """ def __init__(self, x_size, scale, dtype, norm, actname="relu", mlp_ratio=2): super().__init__() s = math.sqrt(scale) self.ln = util.get_norm(norm, x_size, dtype=dtype) self.mlp = mlp.MLP( insize=x_size, nhidlayer=1, outsize=x_size, hidsize=int(x_size * mlp_ratio), hidactiv=functools.partial(act, actname), dtype=dtype, ) self.mlp.layers[0].weight.data *= MLP0_SCALE * s self.mlp.layers[1].weight.data *= MLP1_SCALE * s def residual(self, x): x = self.ln(x) x = self.mlp(x) return x def forward(self, x): return x + self.residual(x) def _is_separate(sep, name): if isinstance(sep, bool): return sep assert isinstance(sep, set) if name in sep: sep.remove(name) return True else: return False def make_maybe_multiscale(make_fn, *args, seqlens, separate, name, **kwargs): """ This function either creates one instance of a module or creates a separate instance of the module for each resolution of the image, determined by the `separate` parameter. We create separate modules if `separate` is True or if `separate` is a set containing `name`. """ if _is_separate(separate, name): modules = [make_fn(*args, **kwargs) for _ in seqlens] return SplitCallJoin(modules, seqlens) else: return make_fn(*args, **kwargs) class SplitCallJoin(nn.Module): def __init__(self, mods, seqlens): super().__init__() self.mods = nn.ModuleList(mods) self.seqlens = seqlens def forward(self, x): tl = sum(self.seqlens) x, undo = misc.reshape_undo(x, "..., z*tl, e", "..., z, tl, e", tl=tl) x = list(th.split(x, self.seqlens, dim=-2)) new_x = [] for x, mod in misc.safezip(x, self.mods): x, this_undo = misc.reshape_undo(x, "..., z, l, e", "..., z*l, e") x = mod(x) x = this_undo(x) new_x.append(x) x = th.cat(new_x, dim=-2) x = undo(x) return x MultiscaleLinear = functools.partial(make_maybe_multiscale, tu.NormedLinear) MultiscalePointwise = functools.partial(make_maybe_multiscale, PointwiseLayer)