lib/xf.py (366 lines of code) (raw):
"""
Implementation of transformer and reshaping-based sparse transformer
"""
import functools
import math
import torch as th
from torch import nn
from torch.nn import functional as F
from lib import misc, mlp
from lib import torch_util as tu
from lib import util
SENTINEL = 0.1337
def attention(
Q_bte,
K_bTe,
V_bTe,
dtype,
mask=True,
extra_btT=None,
maxlen=None,
check_sentinel=False,
use_muP_factor=False,
):
"""
performs softmax(Q*K)*V operation
t : output (write) time axis, possibly size=1 for just the last timestep
T : input (read) time axis
t < T is OK
'check_sentinel' is used when you want to make it impossible to attend to certain keys.
All keys where every value is equal to the constant SENTINEL will be ignored.
Currently this is only used by StridedAttn.
"""
assert Q_bte.dtype == K_bTe.dtype == dtype, f"{Q_bte.dtype}, {K_bTe.dtype}, {dtype} must all match"
e = Q_bte.shape[2]
if check_sentinel:
invalid = (K_bTe == SENTINEL).int().sum(dim=-1) == e
invalid = misc.reshape(invalid, "b, T", "b, 1, T")
if isinstance(mask, th.Tensor):
bias = (~mask).float() * -1e9
elif mask:
bias = get_attn_bias_cached(Q_bte.shape[1], K_bTe.shape[1], maxlen=maxlen, device=Q_bte.device, dtype=th.float32)
else:
bias = Q_bte.new_zeros((), dtype=th.float32)
if extra_btT is not None:
bias = bias + extra_btT
# Equivalent to bias + (1 / math.sqrt(e)) * th.einsum("bte,bpe->btp", Q_bte, K_bte)
# but faster:
logit_btT = th.baddbmm(
bias,
Q_bte.float(),
K_bTe.float().transpose(-1, -2),
alpha=(1 / e) if use_muP_factor else (1 / math.sqrt(e)),
)
if check_sentinel:
logit_btT = logit_btT - 1e9 * invalid.float()
W_btT = th.softmax(logit_btT, dim=2).to(dtype)
if callable(V_bTe):
# This is used by the sharded video model to defer waiting on
# the broadcast of the values until they're needed
V_bTe = V_bTe()
# th.einsum only lets you use lowercase letters, so 'p' for 'past'
# means 'T'
A_bte = th.einsum("btp,bpe->bte", W_btT, V_bTe)
return A_bte
class Attn:
"""
Defines an attention mechanism
All the mechanisms here can be defined by two operations:
1. preprocessing Q,K,V,R[=relative attention query]
to move axes from embedding dimension to
batch dimension, and possibly doing shifts.
2. postprocessing the final result to move axes back to embedding
axis.
"""
def __init__(self, mask, maxlen):
self.mask = mask
self.maxlen = maxlen
def preproc_qkv(self, Q_bte, K_bte, V_bte):
raise NotImplementedError
def preproc_r(self, R_btn):
raise NotImplementedError
def split_heads(x_bte, h):
b, t, e = x_bte.shape
assert e % h == 0, "Embsize must be divisible by number of heads"
q = e // h
x_bthq = x_bte.reshape((b, t, h, q))
x_bhtq = misc.transpose(x_bthq, "bthq", "bhtq")
x_Btq = x_bhtq.reshape((b * h, t, q))
return x_Btq
class All2All(Attn):
def __init__(self, nhead, maxlen, mask=True, head_dim=None):
super().__init__(mask=mask, maxlen=maxlen)
assert (nhead is None) != (head_dim is None), "exactly one of nhead and head_dim must be specified"
self.h = nhead
self.head_dim = head_dim
def preproc_qkv(self, *xs):
q = xs[0].shape[-1]
for x in xs:
assert x.shape[-1] == q, "embedding dimensions do not match"
h = self.h or misc.exact_div(q, self.head_dim)
postproc = functools.partial(self.postproc_a, h=h)
return (postproc, *tuple(split_heads(x, h) for x in xs))
def preproc_r(self, R_btn):
_, ret = self.preproc_qkv(R_btn)
return ret
def postproc_a(self, A_Btq, h):
B, t, q = A_Btq.shape
b = B // h
A_bhtq = A_Btq.reshape((b, h, t, q))
A_bthq = misc.transpose(A_bhtq, "bhtq", "bthq")
A_bte = A_bthq.reshape((b, t, h * q))
return A_bte
def _required_padding(dim, target_div):
if dim % target_div == 0:
return 0
else:
return target_div - dim % target_div
class StridedAttn(Attn):
def __init__(self, nhead, stride, maxlen, mask=True):
super().__init__(mask=mask, maxlen=maxlen)
self.h = nhead
self.stride = stride
def _preproc(self, x, name, Q_t=None, Q_pad=None):
x, undo = misc.reshape_undo(x, "b, t*stride, e", "b, 1, t, stride*e", stride=self.stride)
if name == "Q":
Q_pad = _required_padding(x.shape[2], self.maxlen)
original_t = x.shape[2]
x = F.pad(x, (0, 0, 0, Q_pad), value=SENTINEL)
undo = misc.compose_undo(undo, lambda x: x[:, :, :original_t])
if name == "Q":
Q_t = x.shape[2]
assert Q_t % self.maxlen == 0, f"{Q_t} % {self.maxlen} != 0"
else:
required_len = Q_t + self.maxlen
if x.shape[2] < required_len:
x = F.pad(x, (0, 0, required_len - x.shape[2], 0), value=SENTINEL)
assert x.shape[2] >= required_len
back = x[:, :, -Q_t - self.maxlen : -self.maxlen]
front = x[:, :, -Q_t:]
x = th.cat([back, front], dim=1)
_, _, t, _ = x.shape
assert t == Q_t, f"{t} != {Q_t}"
x, undo = misc.reshape_undo(
x,
"b, pad_shift, t*maxlen, stride*h*q",
"b, pad_shift, t, maxlen, stride, h, q",
maxlen=self.maxlen,
h=self.h,
stride=self.stride,
undo=undo,
)
x, undo = misc.transpose_undo(x, "bptmshq", "bthspmq", undo=undo)
x, undo = misc.reshape_undo(
x,
"b, t, h, stride, pad_shift, maxlen, q",
"b*t*h*stride, pad_shift*maxlen, q",
undo=undo,
)
if name == "Q":
return x, undo, Q_t, Q_pad
else:
return x
def preproc_qkv(self, Q_bte, K_bte, V_bte):
pad = _required_padding(Q_bte.shape[1], self.stride)
if pad:
Q_bte = F.pad(Q_bte, (0, 0, 0, pad), value=SENTINEL)
K_bte = F.pad(K_bte, (0, 0, 0, pad), value=SENTINEL) if K_bte is not None else None
V_bte = F.pad(V_bte, (0, 0, 0, pad), value=SENTINEL) if V_bte is not None else None
undo = lambda x, pad=pad: x[:, :-pad]
else:
undo = None
if K_bte is not None:
pad = _required_padding(K_bte.shape[1], self.stride)
if pad:
K_bte = F.pad(K_bte, (0, 0, pad, 0), value=SENTINEL)
V_bte = F.pad(V_bte, (0, 0, pad, 0), value=SENTINEL)
assert Q_bte.shape[1] % self.stride == 0
assert K_bte is None or K_bte.shape[1] % self.stride == 0
assert V_bte is None or V_bte.shape[1] % self.stride == 0
Q, postproc, Q_t, Q_pad = self._preproc(Q_bte, "Q")
postproc = misc.compose_undo(undo, postproc)
return (
postproc,
Q,
self._preproc(K_bte, "K", Q_t=Q_t, Q_pad=Q_pad) if K_bte is not None else None,
self._preproc(V_bte, "V", Q_t=Q_t, Q_pad=Q_pad) if V_bte is not None else None,
)
def preproc_r(self, R_bte):
_, R, _, _ = self.preproc_qkv(R_bte, None, None)
return R
Q_SCALE = 0.1
K_SCALE = 0.2
V_SCALE = 1.0
PROJ_SCALE = 1.0
MLP0_SCALE = 1.0
MLP1_SCALE = 1.0
R_SCALE = 0.1
B_SCALE = 0.2
class AttentionLayerBase(nn.Module):
def __init__(
self,
*,
attn,
scale,
x_size,
c_size,
qk_size,
v_size,
dtype,
relattn=False,
seqlens=None,
separate=False,
):
super().__init__()
dtype = tu.parse_dtype(dtype)
self.attn = attn
self.x_size = x_size
self.c_size = c_size
s = math.sqrt(scale)
separgs = dict(seqlens=seqlens, separate=separate)
self.q_layer = MultiscaleLinear(x_size, qk_size, name="q", scale=Q_SCALE, dtype=dtype, **separgs)
self.k_layer = MultiscaleLinear(c_size, qk_size, name="k", scale=K_SCALE, bias=False, dtype=dtype, **separgs)
self.v_layer = MultiscaleLinear(c_size, v_size, name="v", scale=V_SCALE * s, bias=False, dtype=dtype, **separgs)
self.proj_layer = MultiscaleLinear(v_size, x_size, name="proj", scale=PROJ_SCALE * s, dtype=dtype, **separgs)
self.relattn = relattn
maxlen = attn.maxlen
assert maxlen > 0 or not attn.mask
if self.relattn:
nbasis = 10
self.r_layer = tu.NormedLinear(x_size, nbasis * attn.h, scale=R_SCALE, dtype=dtype)
self.b_nd = nn.Parameter(th.randn(nbasis, maxlen) * B_SCALE)
self.maxlen = maxlen
self.dtype = dtype
def relattn_logits(self, X_bte, T):
R_btn = self.r_layer(X_bte).float()
R_btn = self.attn.preproc_r(R_btn)
t = R_btn.shape[1]
D_ntT = util.bandify(self.b_nd, t, T)
extra_btT = th.einsum("btn,ntp->btp", R_btn, D_ntT)
return extra_btT
def quick_gelu(x):
return x * th.sigmoid(1.702 * x)
def act(actname, x):
if actname == "relu":
return F.relu(x)
elif actname == "gelu":
return quick_gelu(x)
elif actname == "none":
return x
else:
raise NotImplementedError(actname)
class SelfAttentionLayer(AttentionLayerBase):
"""
Residual attention layer that takes a single tensor x and has it attend to itself
Has the form
output = x + f(x)
"""
def __init__(
self,
x_size,
attn,
scale,
dtype="float32",
norm="layer",
cache_keep_len=None,
relattn=False,
log_scope="sa",
use_muP_factor=False,
**kwargs,
):
super().__init__(
x_size=x_size,
c_size=x_size,
qk_size=x_size,
v_size=x_size,
attn=attn,
scale=scale,
relattn=relattn,
dtype=dtype,
**kwargs,
)
self.ln_x = util.get_norm(norm, x_size, dtype=dtype)
if cache_keep_len is None:
if hasattr(attn, "cache_keep_len"):
cache_keep_len = attn.cache_keep_len
else:
if isinstance(attn, StridedAttn):
stride = attn.stride
else:
stride = 1
cache_keep_len = stride * attn.maxlen
self.cache_keep_len = cache_keep_len
self.log_scope = log_scope
self.use_muP_factor = use_muP_factor
def residual(self, X_bte, state):
X_bte = self.ln_x(X_bte)
Q_bte = self.q_layer(X_bte)
K_bte = self.k_layer(X_bte)
V_bte = self.v_layer(X_bte)
if state:
state, K_bte, V_bte = self.update_state(state, K_bte, V_bte)
postproc_closure, Q_bte, K_bte, V_bte = self.attn.preproc_qkv(Q_bte, K_bte, V_bte)
extra_btT = self.relattn_logits(X_bte, K_bte.shape[1]) if self.relattn else None
A_bte = attention(
Q_bte,
K_bte,
V_bte,
mask=self.attn.mask,
extra_btT=extra_btT,
maxlen=self.maxlen,
dtype=self.dtype,
check_sentinel=isinstance(self.attn, StridedAttn),
use_muP_factor=self.use_muP_factor,
)
A_bte = postproc_closure(A_bte)
Aproj_bte = self.proj_layer(A_bte)
return Aproj_bte, state
def forward(self, X_bte, state):
R_bte, state = self.residual(X_bte, state)
return X_bte + R_bte, state
def stateless_forward(self, X_bte):
out_bte, _state = self.forward(X_bte, None)
return out_bte
def update_state(self, state, K_bte, V_bte):
def append(prev, new):
"""
Given `prev` keys from cache, and `new` keys,
returns (cache, full), where
- cache goes into the output state, length chosen so that on the
next timestep, there are enough cached timesteps to get the full
context of lenth self.maxlen.
- full is used for the current forward pass, with length chosen so
that the first timestep new[:, 0] gets to see a context of
self.maxlen.
"""
tprev = prev.shape[1]
startfull = max(tprev - self.cache_keep_len, 0)
full = th.cat([prev[:, startfull:], new], dim=1)
outstate = full[:, max(full.shape[1] - (self.cache_keep_len), 0) :]
# To see that the preceding slicing is correct, consider the case
# that maxlen==1. Then `full` only consists of `new`, and
# `outstate` is empty
return outstate, full
instate_K, instate_V = state
outstate_K, K_bte = append(instate_K, K_bte)
outstate_V, V_bte = append(instate_V, V_bte)
assert outstate_K.shape[-2] <= self.cache_keep_len
return (outstate_K, outstate_V), K_bte, V_bte
def initial_state(self, batchsize, initial_T=0):
return (
tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype),
tu.zeros((batchsize, initial_T, self.x_size), dtype=self.dtype),
)
def empty_state(self):
return None
class PointwiseLayer(nn.Module):
"""
Residual MLP applied at each timestep
"""
def __init__(self, x_size, scale, dtype, norm, actname="relu", mlp_ratio=2):
super().__init__()
s = math.sqrt(scale)
self.ln = util.get_norm(norm, x_size, dtype=dtype)
self.mlp = mlp.MLP(
insize=x_size,
nhidlayer=1,
outsize=x_size,
hidsize=int(x_size * mlp_ratio),
hidactiv=functools.partial(act, actname),
dtype=dtype,
)
self.mlp.layers[0].weight.data *= MLP0_SCALE * s
self.mlp.layers[1].weight.data *= MLP1_SCALE * s
def residual(self, x):
x = self.ln(x)
x = self.mlp(x)
return x
def forward(self, x):
return x + self.residual(x)
def _is_separate(sep, name):
if isinstance(sep, bool):
return sep
assert isinstance(sep, set)
if name in sep:
sep.remove(name)
return True
else:
return False
def make_maybe_multiscale(make_fn, *args, seqlens, separate, name, **kwargs):
"""
This function either creates one instance of a module or creates
a separate instance of the module for each resolution of the image,
determined by the `separate` parameter. We create separate modules
if `separate` is True or if `separate` is a set containing `name`.
"""
if _is_separate(separate, name):
modules = [make_fn(*args, **kwargs) for _ in seqlens]
return SplitCallJoin(modules, seqlens)
else:
return make_fn(*args, **kwargs)
class SplitCallJoin(nn.Module):
def __init__(self, mods, seqlens):
super().__init__()
self.mods = nn.ModuleList(mods)
self.seqlens = seqlens
def forward(self, x):
tl = sum(self.seqlens)
x, undo = misc.reshape_undo(x, "..., z*tl, e", "..., z, tl, e", tl=tl)
x = list(th.split(x, self.seqlens, dim=-2))
new_x = []
for x, mod in misc.safezip(x, self.mods):
x, this_undo = misc.reshape_undo(x, "..., z, l, e", "..., z*l, e")
x = mod(x)
x = this_undo(x)
new_x.append(x)
x = th.cat(new_x, dim=-2)
x = undo(x)
return x
MultiscaleLinear = functools.partial(make_maybe_multiscale, tu.NormedLinear)
MultiscalePointwise = functools.partial(make_maybe_multiscale, PointwiseLayer)