neuron-explainer/neuron_explainer/explanations/simulator.py [358:372]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        prompt_builder = PromptBuilder()
        prompt_builder.add_message(
            Role.SYSTEM,
            """We're studying neurons in a neural network.
Each neuron looks for some particular thing in a short document.
Look at summary of what the neuron does, and try to predict how it will fire on each token.

The activation format is token<tab>activation, activations go from 0 to 10, "unknown" indicates an unknown activation. Most activations will be 0.
""",
        )

        few_shot_examples = self.few_shot_example_set.get_examples()
        for i, example in enumerate(few_shot_examples):
            prompt_builder.add_message(
                Role.USER,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



neuron-explainer/neuron_explainer/explanations/simulator.py [520:533]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        prompt_builder = PromptBuilder()
        prompt_builder.add_message(
            Role.SYSTEM,
            """We're studying neurons in a neural network. Each neuron looks for some particular thing in a short document. Look at  an explanation of what the neuron does, and try to predict its activations on a particular token.

The activation format is token<tab>activation, and activations range from 0 to 10. Most activations will be 0.

""",
        )

        few_shot_examples = self.few_shot_example_set.get_examples()
        for i, example in enumerate(few_shot_examples):
            prompt_builder.add_message(
                Role.USER,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



