baselines/common/models.py [167:183]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)

        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



baselines/common/models.py [194:210]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)

        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



