in baselines/gail/gail-eval.py [0:0]
def evaluate_env(env_name, seed, policy_hidden_size, stochastic, reuse, prefix):
def get_checkpoint_dir(checkpoint_list, limit, prefix):
for checkpoint in checkpoint_list:
if ('limitation_'+str(limit) in checkpoint) and (prefix in checkpoint):
return checkpoint
return None
def policy_fn(name, ob_space, ac_space, reuse=False):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
reuse=reuse, hid_size=policy_hidden_size, num_hid_layers=2)
data_path = os.path.join('data', 'deterministic.trpo.' + env_name + '.0.00.npz')
dataset = load_dataset(data_path)
checkpoint_list = glob.glob(os.path.join('checkpoint', '*' + env_name + ".*"))
log = {
'traj_limitation': [],
'upper_bound': [],
'avg_ret': [],
'avg_len': [],
'normalized_ret': []
}
for i, limit in enumerate(CONFIG['traj_limitation']):
# Do one evaluation
upper_bound = sum(dataset.rets[:limit])/limit
checkpoint_dir = get_checkpoint_dir(checkpoint_list, limit, prefix=prefix)
checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
env = gym.make(env_name + '-v1')
env.seed(seed)
print('Trajectory limitation: {}, Load checkpoint: {}, '.format(limit, checkpoint_path))
avg_len, avg_ret = run_mujoco.runner(env,
policy_fn,
checkpoint_path,
timesteps_per_batch=1024,
number_trajs=10,
stochastic_policy=stochastic,
reuse=((i != 0) or reuse))
normalized_ret = avg_ret/upper_bound
print('Upper bound: {}, evaluation returns: {}, normalized scores: {}'.format(
upper_bound, avg_ret, normalized_ret))
log['traj_limitation'].append(limit)
log['upper_bound'].append(upper_bound)
log['avg_ret'].append(avg_ret)
log['avg_len'].append(avg_len)
log['normalized_ret'].append(normalized_ret)
env.close()
return log