in baselines/acktr/kfac.py [0:0]
def __init__(self, learning_rate=0.01, momentum=0.9, clip_kl=0.01, kfac_update=2, stats_accum_iter=60, full_stats_init=False, cold_iter=100, cold_lr=None, is_async=False, async_stats=False, epsilon=1e-2, stats_decay=0.95, blockdiag_bias=False, channel_fac=False, factored_damping=False, approxT2=False, use_float64=False, weight_decay_dict={},max_grad_norm=0.5):
self.max_grad_norm = max_grad_norm
self._lr = learning_rate
self._momentum = momentum
self._clip_kl = clip_kl
self._channel_fac = channel_fac
self._kfac_update = kfac_update
self._async = is_async
self._async_stats = async_stats
self._epsilon = epsilon
self._stats_decay = stats_decay
self._blockdiag_bias = blockdiag_bias
self._approxT2 = approxT2
self._use_float64 = use_float64
self._factored_damping = factored_damping
self._cold_iter = cold_iter
if cold_lr == None:
# good heuristics
self._cold_lr = self._lr# * 3.
else:
self._cold_lr = cold_lr
self._stats_accum_iter = stats_accum_iter
self._weight_decay_dict = weight_decay_dict
self._diag_init_coeff = 0.
self._full_stats_init = full_stats_init
if not self._full_stats_init:
self._stats_accum_iter = self._cold_iter
self.sgd_step = tf.Variable(0, name='KFAC/sgd_step', trainable=False)
self.global_step = tf.Variable(
0, name='KFAC/global_step', trainable=False)
self.cold_step = tf.Variable(0, name='KFAC/cold_step', trainable=False)
self.factor_step = tf.Variable(
0, name='KFAC/factor_step', trainable=False)
self.stats_step = tf.Variable(
0, name='KFAC/stats_step', trainable=False)
self.vFv = tf.Variable(0., name='KFAC/vFv', trainable=False)
self.factors = {}
self.param_vars = []
self.stats = {}
self.stats_eigen = {}