def plot()

in baselines/gail/gail-eval.py [0:0]


def plot(env_name, bc_log, gail_log, stochastic):
    upper_bound = bc_log['upper_bound']
    bc_avg_ret = bc_log['avg_ret']
    gail_avg_ret = gail_log['avg_ret']
    plt.plot(CONFIG['traj_limitation'], upper_bound)
    plt.plot(CONFIG['traj_limitation'], bc_avg_ret)
    plt.plot(CONFIG['traj_limitation'], gail_avg_ret)
    plt.xlabel('Number of expert trajectories')
    plt.ylabel('Accumulated reward')
    plt.title('{} unnormalized scores'.format(env_name))
    plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
    plt.grid(b=True, which='major', color='gray', linestyle='--')
    if stochastic:
        title_name = 'result/{}-unnormalized-stochastic-scores.png'.format(env_name)
    else:
        title_name = 'result/{}-unnormalized-deterministic-scores.png'.format(env_name)
    plt.savefig(title_name)
    plt.close()

    bc_normalized_ret = bc_log['normalized_ret']
    gail_normalized_ret = gail_log['normalized_ret']
    plt.plot(CONFIG['traj_limitation'], np.ones(len(CONFIG['traj_limitation'])))
    plt.plot(CONFIG['traj_limitation'], bc_normalized_ret)
    plt.plot(CONFIG['traj_limitation'], gail_normalized_ret)
    plt.xlabel('Number of expert trajectories')
    plt.ylabel('Normalized performance')
    plt.title('{} normalized scores'.format(env_name))
    plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
    plt.grid(b=True, which='major', color='gray', linestyle='--')
    if stochastic:
        title_name = 'result/{}-normalized-stochastic-scores.png'.format(env_name)
    else:
        title_name = 'result/{}-normalized-deterministic-scores.png'.format(env_name)
    plt.ylim(0, 1.6)
    plt.savefig(title_name)
    plt.close()