in baselines/trpo_mpi/trpo_mpi.py [0:0]
def learn(*,
network,
env,
total_timesteps,
timesteps_per_batch=1024, # what to train on
max_kl=0.001,
cg_iters=10,
gamma=0.99,
lam=1.0, # advantage estimation
seed=None,
ent_coef=0.0,
cg_damping=1e-2,
vf_stepsize=3e-4,
vf_iters =3,
max_episodes=0, max_iters=0, # time constraint
callback=None,
load_path=None,
**network_kwargs
):
'''
learn a policy function with TRPO algorithm
Parameters:
----------
network neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
or function that takes input placeholder and returns tuple (output, None) for feedforward nets
or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets
env environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class
timesteps_per_batch timesteps per gradient estimation batch
max_kl max KL divergence between old policy and new policy ( KL(pi_old || pi) )
ent_coef coefficient of policy entropy term in the optimization objective
cg_iters number of iterations of conjugate gradient algorithm
cg_damping conjugate gradient damping
vf_stepsize learning rate for adam optimizer used to optimie value function loss
vf_iters number of iterations of value function optimization iterations per each policy optimization step
total_timesteps max number of timesteps
max_episodes max number of episodes
max_iters maximum number of policy optimization iterations
callback function to be called with (locals(), globals()) each policy optimization step
load_path str, path to load the model from (default: None, i.e. no model is loaded)
**network_kwargs keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
Returns:
-------
learnt model
'''
if MPI is not None:
nworkers = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
else:
nworkers = 1
rank = 0
cpus_per_worker = 1
U.get_session(config=tf.ConfigProto(
allow_soft_placement=True,
inter_op_parallelism_threads=cpus_per_worker,
intra_op_parallelism_threads=cpus_per_worker
))
policy = build_policy(env, network, value_network='copy', **network_kwargs)
set_global_seeds(seed)
np.set_printoptions(precision=3)
# Setup losses and stuff
# ----------------------------------------
ob_space = env.observation_space
ac_space = env.action_space
ob = observation_placeholder(ob_space)
with tf.variable_scope("pi"):
pi = policy(observ_placeholder=ob)
with tf.variable_scope("oldpi"):
oldpi = policy(observ_placeholder=ob)
atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
ac = pi.pdtype.sample_placeholder([None])
kloldnew = oldpi.pd.kl(pi.pd)
ent = pi.pd.entropy()
meankl = tf.reduce_mean(kloldnew)
meanent = tf.reduce_mean(ent)
entbonus = ent_coef * meanent
vferr = tf.reduce_mean(tf.square(pi.vf - ret))
ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
surrgain = tf.reduce_mean(ratio * atarg)
optimgain = surrgain + entbonus
losses = [optimgain, meankl, entbonus, surrgain, meanent]
loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]
dist = meankl
all_var_list = get_trainable_variables("pi")
# var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
# vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
var_list = get_pi_trainable_variables("pi")
vf_var_list = get_vf_trainable_variables("pi")
vfadam = MpiAdam(vf_var_list)
get_flat = U.GetFlat(var_list)
set_from_flat = U.SetFromFlat(var_list)
klgrads = tf.gradients(dist, var_list)
flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
shapes = [var.get_shape().as_list() for var in var_list]
start = 0
tangents = []
for shape in shapes:
sz = U.intprod(shape)
tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
start += sz
gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
fvp = U.flatgrad(gvp, var_list)
assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])
compute_losses = U.function([ob, ac, atarg], losses)
compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))
@contextmanager
def timed(msg):
if rank == 0:
print(colorize(msg, color='magenta'))
tstart = time.time()
yield
print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
else:
yield
def allmean(x):
assert isinstance(x, np.ndarray)
if MPI is not None:
out = np.empty_like(x)
MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
out /= nworkers
else:
out = np.copy(x)
return out
U.initialize()
if load_path is not None:
pi.load(load_path)
th_init = get_flat()
if MPI is not None:
MPI.COMM_WORLD.Bcast(th_init, root=0)
set_from_flat(th_init)
vfadam.sync()
print("Init param sum", th_init.sum(), flush=True)
# Prepare for rollouts
# ----------------------------------------
seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)
episodes_so_far = 0
timesteps_so_far = 0
iters_so_far = 0
tstart = time.time()
lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards
if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0:
# noththing to be done
return pi
assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
'out of max_iters, total_timesteps, and max_episodes only one should be specified'
while True:
if callback: callback(locals(), globals())
if total_timesteps and timesteps_so_far >= total_timesteps:
break
elif max_episodes and episodes_so_far >= max_episodes:
break
elif max_iters and iters_so_far >= max_iters:
break
logger.log("********** Iteration %i ************"%iters_so_far)
with timed("sampling"):
seg = seg_gen.__next__()
add_vtarg_and_adv(seg, gamma, lam)
# ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
vpredbefore = seg["vpred"] # predicted value function before udpate
atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy
args = seg["ob"], seg["ac"], atarg
fvpargs = [arr[::5] for arr in args]
def fisher_vector_product(p):
return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
assign_old_eq_new() # set old parameter values to new parameter values
with timed("computegrad"):
*lossbefore, g = compute_lossandgrad(*args)
lossbefore = allmean(np.array(lossbefore))
g = allmean(g)
if np.allclose(g, 0):
logger.log("Got zero gradient. not updating")
else:
with timed("cg"):
stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
assert np.isfinite(stepdir).all()
shs = .5*stepdir.dot(fisher_vector_product(stepdir))
lm = np.sqrt(shs / max_kl)
# logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
fullstep = stepdir / lm
expectedimprove = g.dot(fullstep)
surrbefore = lossbefore[0]
stepsize = 1.0
thbefore = get_flat()
for _ in range(10):
thnew = thbefore + fullstep * stepsize
set_from_flat(thnew)
meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
improve = surr - surrbefore
logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
if not np.isfinite(meanlosses).all():
logger.log("Got non-finite value of losses -- bad!")
elif kl > max_kl * 1.5:
logger.log("violated KL constraint. shrinking step.")
elif improve < 0:
logger.log("surrogate didn't improve. shrinking step.")
else:
logger.log("Stepsize OK!")
break
stepsize *= .5
else:
logger.log("couldn't compute a good step")
set_from_flat(thbefore)
if nworkers > 1 and iters_so_far % 20 == 0:
paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
for (lossname, lossval) in zip(loss_names, meanlosses):
logger.record_tabular(lossname, lossval)
with timed("vf"):
for _ in range(vf_iters):
for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
include_final_partial_batch=False, batch_size=64):
g = allmean(compute_vflossandgrad(mbob, mbret))
vfadam.update(g, vf_stepsize)
logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
if MPI is not None:
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
else:
listoflrpairs = [lrlocal]
lens, rews = map(flatten_lists, zip(*listoflrpairs))
lenbuffer.extend(lens)
rewbuffer.extend(rews)
logger.record_tabular("EpLenMean", np.mean(lenbuffer))
logger.record_tabular("EpRewMean", np.mean(rewbuffer))
logger.record_tabular("EpThisIter", len(lens))
episodes_so_far += len(lens)
timesteps_so_far += sum(lens)
iters_so_far += 1
logger.record_tabular("EpisodesSoFar", episodes_so_far)
logger.record_tabular("TimestepsSoFar", timesteps_so_far)
logger.record_tabular("TimeElapsed", time.time() - tstart)
if rank==0:
logger.dump_tabular()
return pi