baselines/ppo1/run_mujoco.py (24 lines of code) (raw):

#!/usr/bin/env python3 from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser from baselines.common import tf_util as U from baselines import logger def train(env_id, num_timesteps, seed): from baselines.ppo1 import mlp_policy, pposgd_simple U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=64, num_hid_layers=2) env = make_mujoco_env(env_id, seed) pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', ) env.close() def main(): args = mujoco_arg_parser().parse_args() logger.configure() train(args.env, num_timesteps=args.num_timesteps, seed=args.seed) if __name__ == '__main__': main()