in 9-realtime/openai-realtime-console-example/src/lib/wavtools/lib/analysis/audio_analysis.js [32:86]
static getFrequencies(
analyser,
sampleRate,
fftResult,
analysisType = 'frequency',
minDecibels = -100,
maxDecibels = -30,
) {
if (!fftResult) {
fftResult = new Float32Array(analyser.frequencyBinCount);
analyser.getFloatFrequencyData(fftResult);
}
const nyquistFrequency = sampleRate / 2;
const frequencyStep = (1 / fftResult.length) * nyquistFrequency;
let outputValues;
let frequencies;
let labels;
if (analysisType === 'music' || analysisType === 'voice') {
const useFrequencies =
analysisType === 'voice' ? voiceFrequencies : noteFrequencies;
const aggregateOutput = Array(useFrequencies.length).fill(minDecibels);
for (let i = 0; i < fftResult.length; i++) {
const frequency = i * frequencyStep;
const amplitude = fftResult[i];
for (let n = useFrequencies.length - 1; n >= 0; n--) {
if (frequency > useFrequencies[n]) {
aggregateOutput[n] = Math.max(aggregateOutput[n], amplitude);
break;
}
}
}
outputValues = aggregateOutput;
frequencies =
analysisType === 'voice' ? voiceFrequencies : noteFrequencies;
labels =
analysisType === 'voice' ? voiceFrequencyLabels : noteFrequencyLabels;
} else {
outputValues = Array.from(fftResult);
frequencies = outputValues.map((_, i) => frequencyStep * i);
labels = frequencies.map((f) => `${f.toFixed(2)} Hz`);
}
// We normalize to {0, 1}
const normalizedOutput = outputValues.map((v) => {
return Math.max(
0,
Math.min((v - minDecibels) / (maxDecibels - minDecibels), 1),
);
});
const values = new Float32Array(normalizedOutput);
return {
values,
frequencies,
labels,
};
}