2-assistants/6_agents.py (81 lines of code) (raw):
from openai import OpenAI
from demo_util import color, function_to_schema
import json
from pydantic import BaseModel
class Agent(BaseModel):
name: str = "Agent"
model: str = "gpt-4o"
instructions: str = "You are a helpful Agent"
tools: list = []
class Response(BaseModel):
messages: list
client = OpenAI()
# === Demo Loop ===
def run_full_turn(agent, messages):
num_init_messages = len(messages)
messages = messages.copy()
while True:
# turn python functions into tools and save a reverse map
tool_schemas = [function_to_schema(tool) for tool in agent.tools]
tools_map = {tool.__name__: tool for tool in agent.tools}
# === 1. get openai completion ===
response = client.chat.completions.create(
model=agent.model,
messages=[{"role": "system", "content": agent.instructions}] + messages,
tools=tool_schemas or None,
)
message = response.choices[0].message
messages.append(message)
if message.content: # print assistant response
print(color("Assistant:", "yellow"), message.content)
if not message.tool_calls: # if finished handling tool calls, break
break
# === 2. handle tool calls ===
for tool_call in message.tool_calls:
result = execute_tool_call(tool_call, tools_map)
result_message = {
"role": "tool",
"tool_call_id": tool_call.id,
"content": result,
}
messages.append(result_message)
# ==== 3. return new messages =====
return messages[num_init_messages:]
def execute_tool_call(tool_call, tools_map):
name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
print(color("Assistant:", "yellow"), color(f"{name}({args})", "magenta"))
# call corresponding function with provided arguments
return tools_map[name](**args)
# === Agents ===
def look_up_item(search_query):
"""Use to find item ID.
Search query can be a description or keywords."""
item_id = "item_132612938"
print(color("Found item:", "green"), item_id)
return item_id
def execute_refund(item_id, reason="not provided"):
print(color("\n\n=== Refund Summary ===", "green"))
print(color(f"Item ID: {item_id}", "green"))
print(color(f"Reason: {reason}", "green"))
print("=================\n")
print(color("Refund execution successful!", "green"))
return "success"
def escalate_to_human(summary):
"""Only call this if explicitly asked to."""
print(color("Escalating to human agent...", "red"))
print("\n=== Escalation Report ===")
print(f"Summary: {summary}")
print("=========================\n")
exit()
agent = Agent(
name="Issues and Repairs Agent",
instructions=(
"You are an Issues and Repairs Agent agent for ACME Inc."
"Always answer in a sentence or less."
"Introduce yourself first (company, role), and immediately start this routine with the user:"
"1. First, ask specific, probing questions and understand the user's problem deeper.\n"
" - unless the user has already provided a reason.\n"
"2. Propose a fix (make one up). Wait for the user to try it.\n"
"3. ONLY if not satisfied, offer a refund.\n"
"4. If accepted, search for the ID and then execute refund."
""
),
tools=[execute_refund, look_up_item, escalate_to_human],
)
messages = []
while True:
user = input(color("User: ", "blue") + "\033[90m")
messages.append({"role": "user", "content": user})
new_messages = run_full_turn(agent, messages)
messages.extend(new_messages)