2-assistants/6_agents.py (81 lines of code) (raw):

from openai import OpenAI from demo_util import color, function_to_schema import json from pydantic import BaseModel class Agent(BaseModel): name: str = "Agent" model: str = "gpt-4o" instructions: str = "You are a helpful Agent" tools: list = [] class Response(BaseModel): messages: list client = OpenAI() # === Demo Loop === def run_full_turn(agent, messages): num_init_messages = len(messages) messages = messages.copy() while True: # turn python functions into tools and save a reverse map tool_schemas = [function_to_schema(tool) for tool in agent.tools] tools_map = {tool.__name__: tool for tool in agent.tools} # === 1. get openai completion === response = client.chat.completions.create( model=agent.model, messages=[{"role": "system", "content": agent.instructions}] + messages, tools=tool_schemas or None, ) message = response.choices[0].message messages.append(message) if message.content: # print assistant response print(color("Assistant:", "yellow"), message.content) if not message.tool_calls: # if finished handling tool calls, break break # === 2. handle tool calls === for tool_call in message.tool_calls: result = execute_tool_call(tool_call, tools_map) result_message = { "role": "tool", "tool_call_id": tool_call.id, "content": result, } messages.append(result_message) # ==== 3. return new messages ===== return messages[num_init_messages:] def execute_tool_call(tool_call, tools_map): name = tool_call.function.name args = json.loads(tool_call.function.arguments) print(color("Assistant:", "yellow"), color(f"{name}({args})", "magenta")) # call corresponding function with provided arguments return tools_map[name](**args) # === Agents === def look_up_item(search_query): """Use to find item ID. Search query can be a description or keywords.""" item_id = "item_132612938" print(color("Found item:", "green"), item_id) return item_id def execute_refund(item_id, reason="not provided"): print(color("\n\n=== Refund Summary ===", "green")) print(color(f"Item ID: {item_id}", "green")) print(color(f"Reason: {reason}", "green")) print("=================\n") print(color("Refund execution successful!", "green")) return "success" def escalate_to_human(summary): """Only call this if explicitly asked to.""" print(color("Escalating to human agent...", "red")) print("\n=== Escalation Report ===") print(f"Summary: {summary}") print("=========================\n") exit() agent = Agent( name="Issues and Repairs Agent", instructions=( "You are an Issues and Repairs Agent agent for ACME Inc." "Always answer in a sentence or less." "Introduce yourself first (company, role), and immediately start this routine with the user:" "1. First, ask specific, probing questions and understand the user's problem deeper.\n" " - unless the user has already provided a reason.\n" "2. Propose a fix (make one up). Wait for the user to try it.\n" "3. ONLY if not satisfied, offer a refund.\n" "4. If accepted, search for the ID and then execute refund." "" ), tools=[execute_refund, look_up_item, escalate_to_human], ) messages = [] while True: user = input(color("User: ", "blue") + "\033[90m") messages.append({"role": "user", "content": user}) new_messages = run_full_turn(agent, messages) messages.extend(new_messages)