def __init__()

in evaluations/inception_v3.py [0:0]


    def __init__(self, in_channels, tmp_channels):
        super().__init__()
        self.conv = Conv2dLayer(in_channels, 64, kh=1, kw=1)
        self.tower = torch.nn.Sequential(
            collections.OrderedDict(
                [
                    ("conv", Conv2dLayer(in_channels, 48, kh=1, kw=1)),
                    ("conv_1", Conv2dLayer(48, 64, kh=5, kw=5, padding=2)),
                ]
            )
        )
        self.tower_1 = torch.nn.Sequential(
            collections.OrderedDict(
                [
                    ("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
                    ("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
                    ("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, padding=1)),
                ]
            )
        )
        self.tower_2 = torch.nn.Sequential(
            collections.OrderedDict(
                [
                    (
                        "pool",
                        torch.nn.AvgPool2d(
                            kernel_size=3, stride=1, padding=1, count_include_pad=False
                        ),
                    ),
                    ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
                ]
            )
        )