in evaluations/inception_v3.py [0:0]
def __init__(self, in_channels, tmp_channels):
super().__init__()
self.conv = Conv2dLayer(in_channels, 64, kh=1, kw=1)
self.tower = torch.nn.Sequential(
collections.OrderedDict(
[
("conv", Conv2dLayer(in_channels, 48, kh=1, kw=1)),
("conv_1", Conv2dLayer(48, 64, kh=5, kw=5, padding=2)),
]
)
)
self.tower_1 = torch.nn.Sequential(
collections.OrderedDict(
[
("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, padding=1)),
]
)
)
self.tower_2 = torch.nn.Sequential(
collections.OrderedDict(
[
(
"pool",
torch.nn.AvgPool2d(
kernel_size=3, stride=1, padding=1, count_include_pad=False
),
),
("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
]
)
)