in evaluations/inception_v3.py [0:0]
def __init__(self):
super().__init__()
self.layers = torch.nn.Sequential(
collections.OrderedDict(
[
("conv", Conv2dLayer(3, 32, kh=3, kw=3, stride=2)),
("conv_1", Conv2dLayer(32, 32, kh=3, kw=3)),
("conv_2", Conv2dLayer(32, 64, kh=3, kw=3, padding=1)),
("pool0", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
("conv_3", Conv2dLayer(64, 80, kh=1, kw=1)),
("conv_4", Conv2dLayer(80, 192, kh=3, kw=3)),
("pool1", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
("mixed", InceptionA(192, tmp_channels=32)),
("mixed_1", InceptionA(256, tmp_channels=64)),
("mixed_2", InceptionA(288, tmp_channels=64)),
("mixed_3", InceptionB(288)),
("mixed_4", InceptionC(768, tmp_channels=128)),
("mixed_5", InceptionC(768, tmp_channels=160)),
("mixed_6", InceptionC(768, tmp_channels=160)),
("mixed_7", InceptionC(768, tmp_channels=192)),
("mixed_8", InceptionD(768)),
("mixed_9", InceptionE(1280, use_avg_pool=True)),
("mixed_10", InceptionE(2048, use_avg_pool=False)),
("pool2", torch.nn.AvgPool2d(kernel_size=8)),
]
)
)
self.output = torch.nn.Linear(2048, 1008)