in scripts/edm_train.py [0:0]
def create_argparser():
defaults = dict(
data_dir="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
global_batch_size=2048,
batch_size=-1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=10,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser