in evaluations/inception_v3.py [0:0]
def __init__(self, in_channels, tmp_channels):
super().__init__()
self.conv = Conv2dLayer(in_channels, 192, kh=1, kw=1)
self.tower = torch.nn.Sequential(
collections.OrderedDict(
[
("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
(
"conv_1",
Conv2dLayer(
tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
),
),
(
"conv_2",
Conv2dLayer(tmp_channels, 192, kh=7, kw=1, padding=[3, 0]),
),
]
)
)
self.tower_1 = torch.nn.Sequential(
collections.OrderedDict(
[
("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
(
"conv_1",
Conv2dLayer(
tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
),
),
(
"conv_2",
Conv2dLayer(
tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
),
),
(
"conv_3",
Conv2dLayer(
tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
),
),
(
"conv_4",
Conv2dLayer(tmp_channels, 192, kh=1, kw=7, padding=[0, 3]),
),
]
)
)
self.tower_2 = torch.nn.Sequential(
collections.OrderedDict(
[
(
"pool",
torch.nn.AvgPool2d(
kernel_size=3, stride=1, padding=1, count_include_pad=False
),
),
("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
]
)
)