in cm/train_util.py [0:0]
def run_loop(self):
while not self.lr_anneal_steps or self.step < self.lr_anneal_steps:
batch, cond = next(self.data)
self.run_step(batch, cond)
if self.step % self.log_interval == 0:
logger.dumpkvs()
if self.step % self.save_interval == 0:
self.save()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()