scripts/edm_train.py (79 lines of code) (raw):
"""
Train a diffusion model on images.
"""
import argparse
from cm import dist_util, logger
from cm.image_datasets import load_data
from cm.resample import create_named_schedule_sampler
from cm.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from cm.train_util import TrainLoop
import torch.distributed as dist
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
logger.log("creating data loader...")
if args.batch_size == -1:
batch_size = args.global_batch_size // dist.get_world_size()
if args.global_batch_size % dist.get_world_size() != 0:
logger.log(
f"warning, using smaller global_batch_size of {dist.get_world_size()*batch_size} instead of {args.global_batch_size}"
)
else:
batch_size = args.batch_size
data = load_data(
data_dir=args.data_dir,
batch_size=batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
)
logger.log("creating data loader...")
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
data=data,
batch_size=batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
global_batch_size=2048,
batch_size=-1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=10,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()