scripts/edm_train.py (79 lines of code) (raw):

""" Train a diffusion model on images. """ import argparse from cm import dist_util, logger from cm.image_datasets import load_data from cm.resample import create_named_schedule_sampler from cm.script_util import ( model_and_diffusion_defaults, create_model_and_diffusion, args_to_dict, add_dict_to_argparser, ) from cm.train_util import TrainLoop import torch.distributed as dist def main(): args = create_argparser().parse_args() dist_util.setup_dist() logger.configure() logger.log("creating model and diffusion...") model, diffusion = create_model_and_diffusion( **args_to_dict(args, model_and_diffusion_defaults().keys()) ) model.to(dist_util.dev()) schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) logger.log("creating data loader...") if args.batch_size == -1: batch_size = args.global_batch_size // dist.get_world_size() if args.global_batch_size % dist.get_world_size() != 0: logger.log( f"warning, using smaller global_batch_size of {dist.get_world_size()*batch_size} instead of {args.global_batch_size}" ) else: batch_size = args.batch_size data = load_data( data_dir=args.data_dir, batch_size=batch_size, image_size=args.image_size, class_cond=args.class_cond, ) logger.log("creating data loader...") logger.log("training...") TrainLoop( model=model, diffusion=diffusion, data=data, batch_size=batch_size, microbatch=args.microbatch, lr=args.lr, ema_rate=args.ema_rate, log_interval=args.log_interval, save_interval=args.save_interval, resume_checkpoint=args.resume_checkpoint, use_fp16=args.use_fp16, fp16_scale_growth=args.fp16_scale_growth, schedule_sampler=schedule_sampler, weight_decay=args.weight_decay, lr_anneal_steps=args.lr_anneal_steps, ).run_loop() def create_argparser(): defaults = dict( data_dir="", schedule_sampler="uniform", lr=1e-4, weight_decay=0.0, lr_anneal_steps=0, global_batch_size=2048, batch_size=-1, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=10, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, ) defaults.update(model_and_diffusion_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": main()