scripts/ternary_search.py (198 lines of code) (raw):
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
import numpy as np
import torch as th
import torch.distributed as dist
from functools import cache
from mpi4py import MPI
from cm import dist_util, logger
from cm.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from cm.random_util import get_generator
from cm.karras_diffusion import stochastic_iterative_sampler
from evaluations.th_evaluator import FIDAndIS
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
if "consistency" in args.training_mode:
distillation = True
else:
distillation = False
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys()),
distillation=distillation,
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
fid_is = FIDAndIS()
fid_is.set_ref_batch(args.ref_batch)
(
ref_fid_stats,
ref_spatial_stats,
ref_clip_stats,
) = fid_is.get_ref_batch(args.ref_batch)
def sample_generator(ts):
logger.log("sampling...")
all_images = []
all_labels = []
all_preds = []
generator = get_generator(args.generator, args.num_samples, args.seed)
while len(all_images) * args.batch_size < args.num_samples:
model_kwargs = {}
if args.class_cond:
classes = th.randint(
low=0,
high=NUM_CLASSES,
size=(args.batch_size,),
device=dist_util.dev(),
)
model_kwargs["y"] = classes
def denoiser(x_t, sigma):
_, denoised = diffusion.denoise(model, x_t, sigma, **model_kwargs)
if args.clip_denoised:
denoised = denoised.clamp(-1, 1)
return denoised
x_T = (
generator.randn(
*(args.batch_size, 3, args.image_size, args.image_size),
device=dist_util.dev(),
)
* args.sigma_max
)
sample = stochastic_iterative_sampler(
denoiser,
x_T,
ts,
t_min=args.sigma_min,
t_max=args.sigma_max,
rho=diffusion.rho,
steps=args.steps,
generator=generator,
)
pred, spatial_pred, clip_pred, text_pred, _ = fid_is.get_preds(sample)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
gathered_samples = [
th.zeros_like(sample) for _ in range(dist.get_world_size())
]
gathered_preds = [th.zeros_like(pred) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
dist.all_gather(gathered_preds, pred)
all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
all_preds.extend([pred.cpu().numpy() for pred in gathered_preds])
if args.class_cond:
gathered_labels = [
th.zeros_like(classes) for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_labels, classes)
all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
logger.log(f"created {len(all_images) * args.batch_size} samples")
arr = np.concatenate(all_images, axis=0)
arr = arr[: args.num_samples]
preds = np.concatenate(all_preds, axis=0)
preds = preds[: args.num_samples]
if args.class_cond:
label_arr = np.concatenate(all_labels, axis=0)
label_arr = label_arr[: args.num_samples]
dist.barrier()
logger.log("sampling complete")
return arr, preds
@cache
def get_fid(p, begin=(0,), end=(args.steps - 1,)):
samples, preds = sample_generator(begin + (p,) + end)
is_root = dist.get_rank() == 0
if is_root:
fid_stats = fid_is.get_statistics(preds, -1)
fid = ref_fid_stats.frechet_distance(fid_stats)
fid = MPI.COMM_WORLD.bcast(fid)
# spatial_stats = fid_is.get_statistics(spatial_preds, -1)
# sfid = ref_spatial_stats.frechet_distance(spatial_stats)
# clip_stats = fid_is.get_statistics(clip_preds, -1)
IS = fid_is.get_inception_score(preds)
IS = MPI.COMM_WORLD.bcast(IS)
# clip_fid = fid_is.get_clip_score(clip_preds, text_preds)
# fcd = ref_clip_stats.frechet_distance(clip_stats)
else:
fid = MPI.COMM_WORLD.bcast(None)
IS = MPI.COMM_WORLD.bcast(None)
dist.barrier()
return fid, IS
def ternary_search(before=(0,), after=(17,)):
left = before[-1]
right = after[0]
is_root = dist.get_rank() == 0
while right - left >= 3:
m1 = int(left + (right - left) / 3.0)
m2 = int(right - (right - left) / 3.0)
f1, is1 = get_fid(m1, before, after)
if is_root:
logger.log(f"fid at m1 = {m1} is {f1}, IS is {is1}")
f2, is2 = get_fid(m2, before, after)
if is_root:
logger.log(f"fid at m2 = {m2} is {f2}, IS is {is2}")
if f1 < f2:
right = m2
else:
left = m1
if is_root:
logger.log(f"new interval is [{left}, {right}]")
if right == left:
p = right
elif right - left == 1:
f1, _ = get_fid(left, before, after)
f2, _ = get_fid(right, before, after)
p = m1 if f1 < f2 else m2
elif right - left == 2:
mid = left + 1
f1, _ = get_fid(left, before, after)
f2, _ = get_fid(right, before, after)
fmid, ismid = get_fid(mid, before, after)
if is_root:
logger.log(f"fmid at mid = {mid} is {fmid}, ISmid is {ismid}")
if fmid < f1 and fmid < f2:
p = mid
elif f1 < f2:
p = m1
else:
p = m2
return p
# convert comma separated numbers to tuples
begin = tuple(int(x) for x in args.begin.split(","))
end = tuple(int(x) for x in args.end.split(","))
optimal_p = ternary_search(begin, end)
if dist.get_rank() == 0:
logger.log(f"ternary_search_results: {optimal_p}")
fid, IS = get_fid(optimal_p, begin, end)
logger.log(f"fid at optimal p = {optimal_p} is {fid}, IS is {IS}")
def create_argparser():
defaults = dict(
begin="0",
end="39",
training_mode="consistency_distillation",
generator="determ",
clip_denoised=True,
num_samples=10000,
batch_size=16,
sampler="heun",
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
steps=40,
model_path="",
ref_batch="",
seed=42,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()