in train.py [0:0]
def add_position_embedding(x, x_emb, train, step):
num_e = H.emb_number
emb_std = H.pos_embd_std * np.sqrt(1.0 / num_e)
for idx in range(H.emb_number):
vsize = H.emb_vocabs[idx]
name = f"pos_emb_{idx}"
we = tf.get_variable(
name, [vsize, H.n_embd], dtype=H.dtype,
initializer=random_or_zeros_init(stddev=emb_std))
e = bs.embedding_lookup(we, x_emb[:, idx, :])
e = embedding_dropout(e, train)
x += e
return x