in train.py [0:0]
def sample(name):
sample_batches = []
assert H.samples_to_generate % (H.sample_batch * mpi_size()) == 0
for idx in range(H.samples_to_generate // (H.sample_batch * mpi_size())):
feeds = {}
if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation:
feeds[H.Y_gen_ph] = np.zeros((H.sample_batch, H.num_self_gen_in_use), dtype=np.int32)
samples = sess.run(sample_output, feeds)
sample_batches.append(samples)
logprint(f'generated {sum([a.shape[0] for a in sample_batches])} / {H.samples_to_generate} samples')
if idx == 0 and H.samples_memorycheck:
mem = sess.run(tf.contrib.memory_stats.MaxBytesInUse())
logprint('Runtime memory usage so far (bytes):', f'{mem:,}')
logprint(memory_usage=mem)
if mpi_rank() == 0:
samples = np.concatenate(sample_batches, axis=0)
nppath = os.path.join(H.model_dir, f'{H.desc}-samples-{H.samples_to_generate}-t{H.temperature}.npy')
np.save(nppath, samples)