in train.py [0:0]
def eval(test=False, epoch=None):
if test:
tx = dataset.teX
else:
tx = dataset.vaX
losses = []
for data in iter_data_mpi(tx, n_batch=H.n_batch, log=logprint,
split_by_rank=dataset.full_dataset_valid):
feeds = {H.X_ph: data[0], H.X_emb_ph: H.x_emb}
if H.num_self_gen_in_use > 0 and not H.use_unconditional_augmentation:
feeds[H.Y_gen_ph] = np.zeros((data[0].shape[0], H.num_self_gen_in_use), dtype=np.int32)
losses.append(sess.run(H.avg_eval_loss_gen, feeds))
avg_loss = sum(losses) / len(losses)
content = dict(epoch=epoch, series='eval_loss', loss=avg_loss, bits=avg_loss / np.log(2.))
logprint(**content)
mpi_barrier()
return avg_loss