in train.py [0:0]
def infer(sess, model, hps, iterator):
# Example of using model in inference mode. Load saved model using hps.restore_path
# Can provide x, y from files instead of dataset iterator
# If model is uncondtional, always pass y = np.zeros([bs], dtype=np.int32)
if hps.direct_iterator:
iterator = iterator.get_next()
xs = []
zs = []
for it in range(hps.full_test_its):
if hps.direct_iterator:
# replace with x, y, attr if you're getting CelebA attributes, also modify get_data
x, y = sess.run(iterator)
else:
x, y = iterator()
z = model.encode(x, y)
x = model.decode(y, z)
xs.append(x)
zs.append(z)
x = np.concatenate(xs, axis=0)
z = np.concatenate(zs, axis=0)
np.save('logs/x.npy', x)
np.save('logs/z.npy', z)
return zs