in tfops.py [0:0]
def linear_zeros(name, x, width, logscale_factor=3):
with tf.variable_scope(name):
n_in = int(x.get_shape()[1])
w = tf.get_variable("W", [n_in, width], tf.float32,
initializer=tf.zeros_initializer())
x = tf.matmul(x, w)
x += tf.get_variable("b", [1, width],
initializer=tf.zeros_initializer())
x *= tf.exp(tf.get_variable("logs",
[1, width], initializer=tf.zeros_initializer()) * logscale_factor)
return x