def dump()

in data_loaders/generate_tfr/imagenet_oord.py [0:0]


def dump(fn_root, tfrecord_dir, max_res, expected_images, shards, write):
    """Main converter function."""
    # fn_root = FLAGS.fn_root
    # max_res = FLAGS.max_res
    resolution_log2 = int(np.log2(max_res))
    tfr_prefix = os.path.join(tfrecord_dir, os.path.basename(tfrecord_dir))

    print("Checking in", fn_root)
    img_fn_list = os.listdir(fn_root)
    img_fn_list = [img_fn for img_fn in img_fn_list
                   if img_fn.endswith('.png')]
    num_examples = len(img_fn_list)
    print("Found", num_examples)
    assert num_examples == expected_images

    # Sharding
    tfr_opt = tf.python_io.TFRecordOptions(
        tf.python_io.TFRecordCompressionType.NONE)
    p_shard = np.array_split(np.random.permutation(expected_images), shards)
    img_to_shard = np.zeros(expected_images, dtype=np.int)
    writers = []
    for shard in range(shards):
        img_to_shard[p_shard[shard]] = shard
        tfr_file = tfr_prefix + \
            '-r%02d-s-%04d-of-%04d.tfrecords' % (
                resolution_log2, shard, shards)
        writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt))

    # print(np.unique(img_to_shard, return_counts=True))
    counts = np.unique(img_to_shard, return_counts=True)[1]
    assert len(counts) == shards
    print("Smallest and largest shards have size",
          np.min(counts), np.max(counts))

    for example_idx, img_fn in enumerate(tqdm(img_fn_list)):
        shard = img_to_shard[example_idx]
        img = scipy.ndimage.imread(os.path.join(fn_root, img_fn))
        rows = img.shape[0]
        cols = img.shape[1]
        depth = img.shape[2]
        shape = (rows, cols, depth)
        img = img.astype("uint8")
        img = img.tostring()
        example = tf.train.Example(
            features=tf.train.Features(
                feature={
                    "shape": _int64_feature(shape),
                    "data": _bytes_feature(img),
                    "label": _int64_feature(0)
                }
            )
        )
        if write:
            writers[shard].write(example.SerializeToString())

    print('%-40s\r' % 'Flushing data...', end='', flush=True)
    for writer in writers:
        writer.close()

    print('%-40s\r' % '', end='', flush=True)
    print('Added %d images.' % num_examples)