data_loaders/generate_tfr/imagenet_oord.py (95 lines of code) (raw):
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Generate tfrecords for ImageNet 32x32 and 64x64.
# Get images
Downloaded images from http://image-net.org/small/download.php, and unzip them.
(Move one file from training to test to have 50000 test images)
# Get tfr file from images
Use this script to generate the tfr file.
python imagenet_oord.py --res [RES] --tfrecord_dir [OUTPUT_FOLDER] --write
"""
from __future__ import print_function
import os
import os.path
import scipy.io
import scipy.io.wavfile
import scipy.ndimage
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from typing import Iterable
def _int64_feature(value):
if not isinstance(value, Iterable):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def dump(fn_root, tfrecord_dir, max_res, expected_images, shards, write):
"""Main converter function."""
# fn_root = FLAGS.fn_root
# max_res = FLAGS.max_res
resolution_log2 = int(np.log2(max_res))
tfr_prefix = os.path.join(tfrecord_dir, os.path.basename(tfrecord_dir))
print("Checking in", fn_root)
img_fn_list = os.listdir(fn_root)
img_fn_list = [img_fn for img_fn in img_fn_list
if img_fn.endswith('.png')]
num_examples = len(img_fn_list)
print("Found", num_examples)
assert num_examples == expected_images
# Sharding
tfr_opt = tf.python_io.TFRecordOptions(
tf.python_io.TFRecordCompressionType.NONE)
p_shard = np.array_split(np.random.permutation(expected_images), shards)
img_to_shard = np.zeros(expected_images, dtype=np.int)
writers = []
for shard in range(shards):
img_to_shard[p_shard[shard]] = shard
tfr_file = tfr_prefix + \
'-r%02d-s-%04d-of-%04d.tfrecords' % (
resolution_log2, shard, shards)
writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt))
# print(np.unique(img_to_shard, return_counts=True))
counts = np.unique(img_to_shard, return_counts=True)[1]
assert len(counts) == shards
print("Smallest and largest shards have size",
np.min(counts), np.max(counts))
for example_idx, img_fn in enumerate(tqdm(img_fn_list)):
shard = img_to_shard[example_idx]
img = scipy.ndimage.imread(os.path.join(fn_root, img_fn))
rows = img.shape[0]
cols = img.shape[1]
depth = img.shape[2]
shape = (rows, cols, depth)
img = img.astype("uint8")
img = img.tostring()
example = tf.train.Example(
features=tf.train.Features(
feature={
"shape": _int64_feature(shape),
"data": _bytes_feature(img),
"label": _int64_feature(0)
}
)
)
if write:
writers[shard].write(example.SerializeToString())
print('%-40s\r' % 'Flushing data...', end='', flush=True)
for writer in writers:
writer.close()
print('%-40s\r' % '', end='', flush=True)
print('Added %d images.' % num_examples)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--res", type=int, default=32, help="Image size")
parser.add_argument("--tfrecord_dir", type=str,
required=True, help='place to dump')
parser.add_argument("--write", action='store_true',
help="Whether to write")
hps = parser.parse_args()
# Imagenet
_NUM_IMAGES = {
'train': 1281148,
'validation': 50000,
}
_NUM_SHARDS = {
'train': 2000,
'validation': 80,
}
_FILE = {
'train': 'train_%dx%d' % (hps.res, hps.res),
'validation': 'valid_%dx%d' % (hps.res, hps.res),
}
for split in ['validation', 'train']:
fn_root = _FILE[split]
tfrecord_dir = os.path.join(hps.tfrecord_dir, split)
total_imgs = _NUM_IMAGES[split]
shards = _NUM_SHARDS[split]
if not os.path.exists(tfrecord_dir):
os.mkdir(tfrecord_dir)
dump(fn_root, tfrecord_dir, hps.res, total_imgs, shards, hps.write)