data_loaders/generate_tfr/imagenet_oord.py (95 lines of code) (raw):

# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Generate tfrecords for ImageNet 32x32 and 64x64. # Get images Downloaded images from http://image-net.org/small/download.php, and unzip them. (Move one file from training to test to have 50000 test images) # Get tfr file from images Use this script to generate the tfr file. python imagenet_oord.py --res [RES] --tfrecord_dir [OUTPUT_FOLDER] --write """ from __future__ import print_function import os import os.path import scipy.io import scipy.io.wavfile import scipy.ndimage import tensorflow as tf import numpy as np from tqdm import tqdm from typing import Iterable def _int64_feature(value): if not isinstance(value, Iterable): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def dump(fn_root, tfrecord_dir, max_res, expected_images, shards, write): """Main converter function.""" # fn_root = FLAGS.fn_root # max_res = FLAGS.max_res resolution_log2 = int(np.log2(max_res)) tfr_prefix = os.path.join(tfrecord_dir, os.path.basename(tfrecord_dir)) print("Checking in", fn_root) img_fn_list = os.listdir(fn_root) img_fn_list = [img_fn for img_fn in img_fn_list if img_fn.endswith('.png')] num_examples = len(img_fn_list) print("Found", num_examples) assert num_examples == expected_images # Sharding tfr_opt = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.NONE) p_shard = np.array_split(np.random.permutation(expected_images), shards) img_to_shard = np.zeros(expected_images, dtype=np.int) writers = [] for shard in range(shards): img_to_shard[p_shard[shard]] = shard tfr_file = tfr_prefix + \ '-r%02d-s-%04d-of-%04d.tfrecords' % ( resolution_log2, shard, shards) writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt)) # print(np.unique(img_to_shard, return_counts=True)) counts = np.unique(img_to_shard, return_counts=True)[1] assert len(counts) == shards print("Smallest and largest shards have size", np.min(counts), np.max(counts)) for example_idx, img_fn in enumerate(tqdm(img_fn_list)): shard = img_to_shard[example_idx] img = scipy.ndimage.imread(os.path.join(fn_root, img_fn)) rows = img.shape[0] cols = img.shape[1] depth = img.shape[2] shape = (rows, cols, depth) img = img.astype("uint8") img = img.tostring() example = tf.train.Example( features=tf.train.Features( feature={ "shape": _int64_feature(shape), "data": _bytes_feature(img), "label": _int64_feature(0) } ) ) if write: writers[shard].write(example.SerializeToString()) print('%-40s\r' % 'Flushing data...', end='', flush=True) for writer in writers: writer.close() print('%-40s\r' % '', end='', flush=True) print('Added %d images.' % num_examples) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--res", type=int, default=32, help="Image size") parser.add_argument("--tfrecord_dir", type=str, required=True, help='place to dump') parser.add_argument("--write", action='store_true', help="Whether to write") hps = parser.parse_args() # Imagenet _NUM_IMAGES = { 'train': 1281148, 'validation': 50000, } _NUM_SHARDS = { 'train': 2000, 'validation': 80, } _FILE = { 'train': 'train_%dx%d' % (hps.res, hps.res), 'validation': 'valid_%dx%d' % (hps.res, hps.res), } for split in ['validation', 'train']: fn_root = _FILE[split] tfrecord_dir = os.path.join(hps.tfrecord_dir, split) total_imgs = _NUM_IMAGES[split] shards = _NUM_SHARDS[split] if not os.path.exists(tfrecord_dir): os.mkdir(tfrecord_dir) dump(fn_root, tfrecord_dir, hps.res, total_imgs, shards, hps.write)