data_loaders/generate_tfr/lsun.py (11 lines of code) (raw):

# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """" LSUN dataset # Get image files Download the LSUN dataset as follows: git clone https://github.com/fyu/lsun.git cd lsun python2.7 download.py -c [CATEGORY] Unzip the downloaded .zip files and execute: python2.7 data.py export [IMAGE_DB_PATH] --out_dir [LSUN_FOLDER] --flat # Get tfr file from images Use this script to generate the tfr file. python lsun.py --res [RES] --category [CATEGORY] --lsun_dir [LSUN_FOLDER] --tfrecord_dir [OUTPUT_FOLDER] --write [--realnvp] Without realnvp flag you get 256x256 centre cropped area downsampled images, with flag you get 96x96 images with realnvp preprocessing. """ from __future__ import print_function import os import os.path import numpy import skimage.transform from PIL import Image import tensorflow as tf import numpy as np from tqdm import tqdm from typing import Iterable def _int64_feature(value): if not isinstance(value, Iterable): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def centre_crop(img): h, w = img.shape[:2] crop = min(h, w) return img[(h - crop) // 2: (h + crop) // 2, (w - crop) // 2: (w + crop) // 2] def dump(fn_root, tfrecord_dir, max_res, expected_images, shards, write, realnvp=False): """Main converter function.""" resolution_log2 = int(np.log2(max_res)) tfr_prefix = os.path.join(tfrecord_dir, os.path.basename(tfrecord_dir)) print("Checking in", fn_root) img_fn_list = os.listdir(fn_root) img_fn_list = [img_fn for img_fn in img_fn_list if img_fn.endswith('.webp')] num_examples = len(img_fn_list) print("Found", num_examples) assert num_examples == expected_images tfr_opt = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.NONE) p_shard = np.array_split(np.random.permutation(expected_images), shards) img_to_shard = np.zeros(expected_images, dtype=np.int) writers = [] for shard in tqdm(range(shards)): img_to_shard[p_shard[shard]] = shard tfr_file = tfr_prefix + \ '-r%02d-s-%04d-of-%04d.tfrecords' % ( resolution_log2, shard, shards) writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt)) # print(np.unique(img_to_shard, return_counts=True)) counts = np.unique(img_to_shard, return_counts=True)[1] assert len(counts) == shards print("Smallest and largest shards have size", np.min(counts), np.max(counts)) for example_idx, img_fn in enumerate(tqdm(img_fn_list)): shard = img_to_shard[example_idx] img = numpy.array(Image.open(os.path.join(fn_root, img_fn))) rows = img.shape[0] cols = img.shape[1] if realnvp: downscale = min(rows / 96., cols / 96.) img = skimage.transform.pyramid_reduce(img, downscale) img *= 255. img = img.astype("uint8") else: img = centre_crop(img) img = Image.fromarray(img, 'RGB') img = img.resize((max_res, max_res), Image.ANTIALIAS) img = np.asarray(img) rows = img.shape[0] cols = img.shape[1] depth = img.shape[2] shape = (rows, cols, depth) img = img.tostring() example = tf.train.Example( features=tf.train.Features( feature={ "shape": _int64_feature(shape), "data": _bytes_feature(img), "label": _int64_feature(0) } ) ) if write: writers[shard].write(example.SerializeToString()) print('%-40s\r' % 'Flushing data...', end='', flush=True) for writer in writers: writer.close() print('%-40s\r' % '', end='', flush=True) print('Added %d images.' % num_examples) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--category", type=str, help="LSUN category") parser.add_argument("--realnvp", action='store_true', help="Use this flag to do realnvp preprocessing instead of our centre-crops") parser.add_argument("--res", type=int, default=256, help="Image size") parser.add_argument("--lsun_dir", type=str, required=True, help="place of lsun dir") parser.add_argument("--tfrecord_dir", type=str, required=True, help='place to dump') parser.add_argument("--write", action='store_true', help="Whether to write") hps = parser.parse_args() # LSUN # CATEGORIES = ["bedroom", "bridge", "church_outdoor", "classroom", "conference_room", "dining_room", "kitchen", "living"] base_tfr = hps.tfrecord_dir res = hps.res for realnvp in [False, True]: for category in ["tower", "church_outdoor", "bedroom"]: hps.realnvp = realnvp hps.category = category if realnvp: hps.tfrecord_dir = "%s_%s/%s" % (base_tfr, "realnvp", hps.category) else: hps.tfrecord_dir = "%s/%s" % (base_tfr, hps.category) print(hps.realnvp, hps.category, hps.lsun_dir, hps.tfrecord_dir) imgs = { 'bedroom': 3033042, 'bridge': 818687, 'church_outdoor': 126227, 'classroom': 168103, 'conference_room': 229069, 'dining_room': 657571, 'kitchen': 2212277, 'living_room': 1315802, 'restaurant': 626331, 'tower': 708264 } _NUM_IMAGES = { 'train': imgs[hps.category], 'validation': 300, } _NUM_SHARDS = { 'train': 2560, 'validation': 1, } _FILE = { 'train': os.path.join(hps.lsun_dir, '%s_train' % hps.category), 'validation': os.path.join(hps.lsun_dir, '%s_val' % hps.category) } if hps.realnvp: res = 96 else: res = hps.res for split in ['validation', 'train']: fn_root = _FILE[split] tfrecord_dir = os.path.join(hps.tfrecord_dir, split) total_imgs = _NUM_IMAGES[split] shards = _NUM_SHARDS[split] if not os.path.exists(tfrecord_dir): os.mkdir(tfrecord_dir) dump(fn_root, tfrecord_dir, res, total_imgs, shards, hps.write, hps.realnvp)