def sample_sequence()

in src/sample.py [0:0]


def sample_sequence(*, hparams, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, top_p=1):
    if start_token is None:
        assert context is not None, 'Specify exactly one of start_token and context!'
    else:
        assert context is None, 'Specify exactly one of start_token and context!'
        context = tf.fill([batch_size, 1], start_token)

    def step(hparams, tokens, past=None):
        lm_output = model.model(hparams=hparams, X=tokens, past=past, reuse=tf.AUTO_REUSE)

        logits = lm_output['logits'][:, :, :hparams.n_vocab]
        presents = lm_output['present']
        presents.set_shape(model.past_shape(hparams=hparams, batch_size=batch_size))
        return {
            'logits': logits,
            'presents': presents,
        }

    with tf.name_scope('sample_sequence'):
        def body(past, prev, output):
            next_outputs = step(hparams, prev, past=past)
            logits = next_outputs['logits'][:, -1, :]  / tf.to_float(temperature)
            logits = top_k_logits(logits, k=top_k)
            logits = top_p_logits(logits, p=top_p)
            samples = tf.multinomial(logits, num_samples=1, output_dtype=tf.int32)
            return [
                next_outputs['presents'] if past is None else tf.concat([past, next_outputs['presents']], axis=-2),
                samples,
                tf.concat([output, samples], axis=1)
            ]

        past, prev, output = body(None, context, context)

        def cond(*args):
            return True

        _, _, tokens = tf.while_loop(
            cond=cond, body=body,
            maximum_iterations=length - 1,
            loop_vars=[
                past,
                prev,
                output
            ],
            shape_invariants=[
                tf.TensorShape(model.past_shape(hparams=hparams, batch_size=batch_size)),
                tf.TensorShape([batch_size, None]),
                tf.TensorShape([batch_size, None]),
            ],
            back_prop=False,
        )

        return tokens