def configure_optimizers()

in grok/training.py [0:0]


    def configure_optimizers(self) -> Tuple[List[Any], List[Dict]]:
        """
        Used by pytorch_lighting

        :returns: optimizers and schedulers.
        """
        optimizer = CustomAdamW(
            self.parameters(),
            betas=(0.9, 0.98),
            eps=1e-8,
            lr=1,
            weight_decay=self.hparams.weight_decay,
            noise_factor=self.hparams.noise_factor,
            weight_decay_form=self.hparams.weight_decay_kind,
        )
        # optimizer = SAM(
        #     self.parameters(),
        #     base_optimizer=CustomAdamW,
        #     rho=0.05,
        #     betas=(0.9, 0.98),
        #     eps=1e-8,
        #     lr=1,
        #     weight_decay=self.hparams.weight_decay,
        #     noise_factor=self.hparams.noise_factor,
        # )
        schedulers = [
            {
                "scheduler": LambdaLR(optimizer, lr_lambda=self._scheduler_lr),
                "interval": "step",
                "frequency": 1,
            }
        ]
        return [optimizer], schedulers