in evaluations/evaluator.py [0:0]
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
"""
Evaluate if new feature vectors are at the manifold.
"""
num_eval_images = eval_features.shape[0]
num_ref_images = radii.shape[0]
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
for begin1 in range(0, num_eval_images, self.row_batch_size):
end1 = min(begin1 + self.row_batch_size, num_eval_images)
feature_batch = eval_features[begin1:end1]
for begin2 in range(0, num_ref_images, self.col_batch_size):
end2 = min(begin2 + self.col_batch_size, num_ref_images)
ref_batch = features[begin2:end2]
distance_batch[
0 : end1 - begin1, begin2:end2
] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
# From the minibatch of new feature vectors, determine if they are in the estimated manifold.
# If a feature vector is inside a hypersphere of some reference sample, then
# the new sample lies at the estimated manifold.
# The radii of the hyperspheres are determined from distances of neighborhood size k.
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
max_realism_score[begin1:end1] = np.max(
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
)
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
return {
"fraction": float(np.mean(batch_predictions)),
"batch_predictions": batch_predictions,
"max_realisim_score": max_realism_score,
"nearest_indices": nearest_indices,
}