in scripts/classifier_train.py [0:0]
def create_argparser():
defaults = dict(
data_dir="",
val_data_dir="",
noised=True,
iterations=150000,
lr=3e-4,
weight_decay=0.0,
anneal_lr=False,
batch_size=4,
microbatch=-1,
schedule_sampler="uniform",
resume_checkpoint="",
log_interval=10,
eval_interval=5,
save_interval=10000,
)
defaults.update(classifier_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser