def compute_top_k()

in scripts/classifier_train.py [0:0]


def compute_top_k(logits, labels, k, reduction="mean"):
    _, top_ks = th.topk(logits, k, dim=-1)
    if reduction == "mean":
        return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
    elif reduction == "none":
        return (top_ks == labels[:, None]).float().sum(dim=-1)