scripts/image_train.py [37:57]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        class_cond=args.class_cond,
    )

    logger.log("training...")
    TrainLoop(
        model=model,
        diffusion=diffusion,
        data=data,
        batch_size=args.batch_size,
        microbatch=args.microbatch,
        lr=args.lr,
        ema_rate=args.ema_rate,
        log_interval=args.log_interval,
        save_interval=args.save_interval,
        resume_checkpoint=args.resume_checkpoint,
        use_fp16=args.use_fp16,
        fp16_scale_growth=args.fp16_scale_growth,
        schedule_sampler=schedule_sampler,
        weight_decay=args.weight_decay,
        lr_anneal_steps=args.lr_anneal_steps,
    ).run_loop()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



scripts/super_res_train.py [40:60]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        class_cond=args.class_cond,
    )

    logger.log("training...")
    TrainLoop(
        model=model,
        diffusion=diffusion,
        data=data,
        batch_size=args.batch_size,
        microbatch=args.microbatch,
        lr=args.lr,
        ema_rate=args.ema_rate,
        log_interval=args.log_interval,
        save_interval=args.save_interval,
        resume_checkpoint=args.resume_checkpoint,
        use_fp16=args.use_fp16,
        fp16_scale_growth=args.fp16_scale_growth,
        schedule_sampler=schedule_sampler,
        weight_decay=args.weight_decay,
        lr_anneal_steps=args.lr_anneal_steps,
    ).run_loop()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



