in apex/apex/amp/_initialize.py [0:0]
def check_params_fp32(models):
for model in models:
for name, param in model.named_parameters():
if param.is_floating_point():
if 'Half' in param.type():
warn_or_err("Found param {} with type {}, expected torch.cuda.FloatTensor.\n"
"When using amp.initialize, you do not need to call .half() on your model\n"
"before passing it, no matter what optimization level you choose.".format(
name, param.type()))
elif not param.is_cuda:
warn_or_err("Found param {} with type {}, expected torch.cuda.FloatTensor.\n"
"When using amp.initialize, you need to provide a model with parameters\n"
"located on a CUDA device before passing it no matter what optimization level\n"
"you chose. Use model.to('cuda') to use the default device.".format(
name, param.type()))
# Backward compatibility for PyTorch 0.4
if hasattr(model, 'named_buffers'):
buf_iter = model.named_buffers()
else:
buf_iter = model._buffers
for obj in buf_iter:
if type(obj)==tuple:
name, buf = obj
else:
name, buf = obj, buf_iter[obj]
if buf.is_floating_point():
if 'Half' in buf.type():
warn_or_err("Found buffer {} with type {}, expected torch.cuda.FloatTensor.\n"
"When using amp.initialize, you do not need to call .half() on your model\n"
"before passing it, no matter what optimization level you choose.".format(
name, buf.type()))
elif not buf.is_cuda:
warn_or_err("Found buffer {} with type {}, expected torch.cuda.FloatTensor.\n"
"When using amp.initialize, you need to provide a model with buffers\n"
"located on a CUDA device before passing it no matter what optimization level\n"
"you chose. Use model.to('cuda') to use the default device.".format(
name, buf.type()))