def primed_sample()

in jukebox/prior/autoregressive.py [0:0]


    def primed_sample(self, n_samples, x, x_cond=None, y_cond=None, encoder_kv=None, fp16=False, temp=1.0, top_k=0,
                      top_p=0.0, get_preds=False, chunk_size=None, sample_tokens=None):
        assert self.training == False

        if sample_tokens is None: sample_tokens=self.input_dims
        # Preprocess.
        with t.no_grad():
            x = self.preprocess(x)
        assert isinstance(x, t.cuda.LongTensor)
        assert (0 <= x).all() and (x < self.bins).all()
        assert x.shape[0] == n_samples
        xs = t.split(x, 1, dim=1)
        xs = list(xs)
        assert len(xs) < sample_tokens

        N, D = n_samples, self.input_dims
        if self.y_cond:
            assert y_cond is not None
            assert y_cond.shape == (N, 1, self.width)
        else:
            assert y_cond is None

        if self.x_cond:
            assert x_cond is not None
            assert x_cond.shape == (N, D, self.width) or x_cond.shape == (N, 1, self.width), f"Got {x_cond.shape}, expected ({N}, {D}/{1}, {self.width})"
        else:
            assert x_cond is None
            x_cond = t.zeros((N, 1, self.width), dtype=t.float).cuda()

        with t.no_grad():
            if get_preds:
                preds = []

            # Fill up key/value cache for past context by runing forward pass.
            # We do so in chunks instead of doing the whole past in one forward pass to reduce max memory usage.
            if chunk_size is None:
                chunk_size = len(xs)
            #assert len(xs) % chunk_size == 0, f'expected {len(xs)} to be divisible by {chunk_size}'
            chunk_sizes = split_chunks(len(xs), chunk_size)
            x_primes = []
            start = 0
            x = None
            for current_chunk_size in get_range(chunk_sizes):
                xs_prime, conds_prime = [], []
                for sample_t in range(start, start + current_chunk_size):
                    x_prime, cond_prime = self.get_emb(sample_t, n_samples, x, x_cond, y_cond)
                    x = xs[sample_t]
                    xs_prime.append(x_prime)
                    conds_prime.append(cond_prime)
                start = start + current_chunk_size

                x_prime, cond_prime = t.cat(xs_prime, dim=1), t.cat(conds_prime, dim=1)
                assert x_prime.shape == (n_samples, current_chunk_size, self.width)
                assert cond_prime.shape == (n_samples, current_chunk_size, self.width)
                del xs_prime
                del conds_prime
                if not get_preds:
                    del cond_prime
                x_prime = self.transformer(x_prime, encoder_kv=encoder_kv, sample=True, fp16=fp16)

                if get_preds:
                    if self.add_cond_after_transformer:
                        x_prime = x_prime + cond_prime
                    assert x_prime.shape == (n_samples, current_chunk_size, self.width)
                    del cond_prime
                    x_primes.append(x_prime)
                else:
                    del x_prime

            if get_preds:
                x_prime = t.cat(x_primes, dim=1)
                assert x_prime.shape == (n_samples, len(xs), self.width)
                x_prime = self.x_out(x_prime)  # Predictions
                preds.append(x_prime)

            empty_cache()
            self.transformer.check_cache(n_samples, len(xs), fp16)

            x = xs[-1]
            assert x.shape == (n_samples, 1)
            empty_cache()
            for sample_t in get_range(range(len(xs), sample_tokens)):
                x, cond = self.get_emb(sample_t, n_samples, x, x_cond, y_cond)
                self.transformer.check_cache(n_samples, sample_t, fp16)
                x = self.transformer(x, encoder_kv=encoder_kv, sample=True, fp16=fp16) # Transformer
                if self.add_cond_after_transformer:
                    x = x + cond
                assert x.shape == (n_samples, 1, self.width)
                x = self.x_out(x) # Predictions
                if get_preds:
                    preds.append(x)
                # Adjust logits
                x = x / temp
                x = filter_logits(x, top_k=top_k, top_p=top_p)
                x = t.distributions.Categorical(logits=x).sample() # Sample and replace x
                assert x.shape == (n_samples, 1)
                xs.append(x.clone())

            del x
            self.transformer.del_cache()

            x = t.cat(xs, dim=1)
            if get_preds:
                preds = t.cat(preds, dim=1)
            x = self.postprocess(x, sample_tokens)
        if get_preds:
            return x, preds
        else:
            return x