apex/apex/amp/rnn_compat.py (35 lines of code) (raw):
from . import utils, wrap
import torch
_VF = torch._C._VariableFunctions
RNN_NAMES = ['rnn_relu', 'rnn_tanh', 'gru', 'lstm']
def _gen_VF_wrapper(name):
def wrapper(*args, **kwargs):
return getattr(_VF, name)(*args, **kwargs)
return wrapper
# Some python magic to generate an object that has the rnn cell functions
# defined on it, all of which call into corresponding _VF version.
# Intended to patch torch.nn.modules.rnn._VF (aka, the ref named "_VF"
# imported at module scope within torch.nn.modules.rnn). This should
# not affect third-party importers of _VF.py.
class VariableFunctionsShim(object):
def __init__(self):
for name in RNN_NAMES:
for suffix in ['', '_cell']:
fn_name = name + suffix
setattr(self, fn_name, _gen_VF_wrapper(fn_name))
def has_old_rnns():
try:
torch.nn.backends.thnn.backend.LSTMCell
return True
except:
return False
def whitelist_rnn_cells(handle, verbose):
# Different module + function names in old/new RNN cases
if has_old_rnns():
fn_names = ['RNNReLUCell', 'RNNTanhCell', 'LSTMCell', 'GRUCell']
mod = torch.nn.backends.thnn.backend
else:
fn_names = [x + '_cell' for x in RNN_NAMES]
mod = torch.nn.modules.rnn._VF
assert isinstance(mod, VariableFunctionsShim)
# Insert casts on cell functions
for fn in fn_names:
wrap.cached_cast(mod, fn, utils.maybe_half, handle,
try_caching=True, verbose=verbose)
if has_old_rnns():
# Special handling of `backward` for fused gru / lstm:
# The `backward` method calls Tensor.sum() (blacklist) internally,
# and then the resulting grad_input has the wrong type.
# TODO: where else is this a problem?
for rnn_type in ['GRUFused', 'LSTMFused']:
mod = getattr(torch.nn._functions.thnn.rnnFusedPointwise, rnn_type)
wrap.disable_casts(mod, 'backward', handle)