def mlp_model()

in experiments/train.py [0:0]


def mlp_model(input, num_outputs, scope, reuse=False, num_units=64, rnn_cell=None):
    # This model takes as input an observation and returns values of all actions
    with tf.variable_scope(scope, reuse=reuse):
        out = input
        out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
        out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu)
        out = layers.fully_connected(out, num_outputs=num_outputs, activation_fn=None)
        return out