mlebench/competitions/3d-object-detection-for-autonomous-vehicles/mAP_evaluation.py (215 lines of code) (raw):

# Verbatim from: https://github.com/lyft/nuscenes-devkit/blob/master/lyft_dataset_sdk/eval/detection/mAP_evaluation.py """ mAP 3D calculation for the data in nuScenes format. The intput files expected to have the format: Expected fields: gt = [{ 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac', 'translation': [974.2811881299899, 1714.6815014457964, -23.689857123368846], 'size': [1.796, 4.488, 1.664], 'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121], 'name': 'car' }] prediction_result = { 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac', 'translation': [971.8343488872263, 1713.6816097857359, -25.82534357061308], 'size': [2.519726579986132, 7.810161372666739, 3.483438286096803], 'rotation': [0.10913582721095375, 0.04099572636992043, 0.01927712319721745, 1.029328402625659], 'name': 'car', 'score': 0.3077029437237213 } input arguments: --pred_file: file with predictions --gt_file: ground truth file --iou_threshold: IOU threshold In general we would be interested in average of mAP at thresholds [0.5, 0.55, 0.6, 0.65,...0.95], similar to the standard COCO => one needs to run this file N times for every IOU threshold independently. """ import argparse import json from collections import defaultdict from pathlib import Path import numpy as np from pyquaternion import Quaternion from shapely.geometry import Polygon class Box3D: """Data class used during detection evaluation. Can be a prediction or ground truth.""" def __init__(self, **kwargs): sample_token = kwargs["sample_token"] translation = kwargs["translation"] size = kwargs["size"] rotation = kwargs["rotation"] name = kwargs["name"] score = kwargs.get("score", -1) if not isinstance(sample_token, str): raise TypeError("Sample_token must be a string!") if not len(translation) == 3: raise ValueError("Translation must have 3 elements!") if np.any(np.isnan(translation)): raise ValueError("Translation may not be NaN!") if not len(size) == 3: raise ValueError("Size must have 3 elements!") if np.any(np.isnan(size)): raise ValueError("Size may not be NaN!") if not len(rotation) == 4: raise ValueError("Rotation must have 4 elements!") if np.any(np.isnan(rotation)): raise ValueError("Rotation may not be NaN!") if name is None: raise ValueError("Name cannot be empty!") # Assign. self.sample_token = sample_token self.translation = translation self.size = size self.volume = np.prod(self.size) self.score = score assert np.all([x > 0 for x in size]) self.rotation = rotation self.name = name self.quaternion = Quaternion(self.rotation) self.width, self.length, self.height = size self.center_x, self.center_y, self.center_z = self.translation self.min_z = self.center_z - self.height / 2 self.max_z = self.center_z + self.height / 2 self.ground_bbox_coords = None self.ground_bbox_coords = self.get_ground_bbox_coords() @staticmethod def check_orthogonal(a, b, c): """Check that vector (b - a) is orthogonal to the vector (c - a).""" return np.isclose((b[0] - a[0]) * (c[0] - a[0]) + (b[1] - a[1]) * (c[1] - a[1]), 0) def get_ground_bbox_coords(self): if self.ground_bbox_coords is not None: return self.ground_bbox_coords return self.calculate_ground_bbox_coords() def calculate_ground_bbox_coords(self): """We assume that the 3D box has lower plane parallel to the ground. Returns: Polygon with 4 points describing the base. """ if self.ground_bbox_coords is not None: return self.ground_bbox_coords rotation_matrix = self.quaternion.rotation_matrix cos_angle = rotation_matrix[0, 0] sin_angle = rotation_matrix[1, 0] point_0_x = self.center_x + self.length / 2 * cos_angle + self.width / 2 * sin_angle point_0_y = self.center_y + self.length / 2 * sin_angle - self.width / 2 * cos_angle point_1_x = self.center_x + self.length / 2 * cos_angle - self.width / 2 * sin_angle point_1_y = self.center_y + self.length / 2 * sin_angle + self.width / 2 * cos_angle point_2_x = self.center_x - self.length / 2 * cos_angle - self.width / 2 * sin_angle point_2_y = self.center_y - self.length / 2 * sin_angle + self.width / 2 * cos_angle point_3_x = self.center_x - self.length / 2 * cos_angle + self.width / 2 * sin_angle point_3_y = self.center_y - self.length / 2 * sin_angle - self.width / 2 * cos_angle point_0 = point_0_x, point_0_y point_1 = point_1_x, point_1_y point_2 = point_2_x, point_2_y point_3 = point_3_x, point_3_y assert self.check_orthogonal(point_0, point_1, point_3) assert self.check_orthogonal(point_1, point_0, point_2) assert self.check_orthogonal(point_2, point_1, point_3) assert self.check_orthogonal(point_3, point_0, point_2) self.ground_bbox_coords = Polygon( [ (point_0_x, point_0_y), (point_1_x, point_1_y), (point_2_x, point_2_y), (point_3_x, point_3_y), (point_0_x, point_0_y), ] ) return self.ground_bbox_coords def get_height_intersection(self, other): min_z = max(other.min_z, self.min_z) max_z = min(other.max_z, self.max_z) return max(0, max_z - min_z) def get_area_intersection(self, other) -> float: result = self.ground_bbox_coords.intersection(other.ground_bbox_coords).area assert result <= self.width * self.length return result def get_intersection(self, other) -> float: height_intersection = self.get_height_intersection(other) area_intersection = self.ground_bbox_coords.intersection(other.ground_bbox_coords).area return height_intersection * area_intersection def get_iou(self, other): intersection = self.get_intersection(other) union = self.volume + other.volume - intersection iou = np.clip(intersection / union, 0, 1) return iou def __repr__(self): return str(self.serialize()) def serialize(self) -> dict: """Returns: Serialized instance as dict.""" return { "sample_token": self.sample_token, "translation": self.translation, "size": self.size, "rotation": self.rotation, "name": self.name, "volume": self.volume, "score": self.score, } def group_by_key(detections, key): groups = defaultdict(list) for detection in detections: groups[detection[key]].append(detection) return groups def wrap_in_box(input): result = {} for key, value in input.items(): result[key] = [Box3D(**x) for x in value] return result def get_envelope(precisions): """Compute the precision envelope. Args: precisions: Returns: """ for i in range(precisions.size - 1, 0, -1): precisions[i - 1] = np.maximum(precisions[i - 1], precisions[i]) return precisions def get_ap(recalls, precisions): """Calculate average precision. Args: recalls: precisions: Returns (float): average precision. Returns: """ # correct AP calculation # first append sentinel values at the end recalls = np.concatenate(([0.0], recalls, [1.0])) precisions = np.concatenate(([0.0], precisions, [0.0])) precisions = get_envelope(precisions) # to calculate area under PR curve, look for points where X axis (recall) changes value i = np.where(recalls[1:] != recalls[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((recalls[i + 1] - recalls[i]) * precisions[i + 1]) return ap def get_ious(gt_boxes, predicted_box): return [predicted_box.get_iou(x) for x in gt_boxes] def recall_precision(gt, predictions, iou_threshold): num_gts = len(gt) image_gts = group_by_key(gt, "sample_token") image_gts = wrap_in_box(image_gts) sample_gt_checked = { sample_token: np.zeros(len(boxes)) for sample_token, boxes in image_gts.items() } predictions = sorted(predictions, key=lambda x: x["score"], reverse=True) # go down dets and mark TPs and FPs num_predictions = len(predictions) tp = np.zeros(num_predictions) fp = np.zeros(num_predictions) for prediction_index, prediction in enumerate(predictions): predicted_box = Box3D(**prediction) sample_token = prediction["sample_token"] max_overlap = -np.inf jmax = -1 try: gt_boxes = image_gts[sample_token] # gt_boxes per sample gt_checked = sample_gt_checked[sample_token] # gt flags per sample except KeyError: gt_boxes = [] gt_checked = None if len(gt_boxes) > 0: overlaps = get_ious(gt_boxes, predicted_box) max_overlap = np.max(overlaps) jmax = np.argmax(overlaps) if max_overlap > iou_threshold: if gt_checked[jmax] == 0: tp[prediction_index] = 1.0 gt_checked[jmax] = 1 else: fp[prediction_index] = 1.0 else: fp[prediction_index] = 1.0 # compute precision recall fp = np.cumsum(fp, axis=0) tp = np.cumsum(tp, axis=0) recalls = tp / float(num_gts) assert np.all(0 <= recalls) & np.all(recalls <= 1) # avoid divide by zero in case the first detection matches a difficult ground truth precisions = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) assert np.all(0 <= precisions) & np.all(precisions <= 1) ap = get_ap(recalls, precisions) return recalls, precisions, ap def get_average_precisions( gt: list, predictions: list, class_names: list, iou_threshold: float ) -> np.array: """Returns an array with an average precision per class. Args: gt: list of dictionaries in the format described below. predictions: list of dictionaries in the format described below. class_names: list of the class names. iou_threshold: IOU threshold used to calculate TP / FN Returns an array with an average precision per class. Ground truth and predictions should have schema: gt = [{ 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac', 'translation': [974.2811881299899, 1714.6815014457964, -23.689857123368846], 'size': [1.796, 4.488, 1.664], 'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121], 'name': 'car' }] predictions = [{ 'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac', 'translation': [971.8343488872263, 1713.6816097857359, -25.82534357061308], 'size': [2.519726579986132, 7.810161372666739, 3.483438286096803], 'rotation': [0.10913582721095375, 0.04099572636992043, 0.01927712319721745, 1.029328402625659], 'name': 'car', 'score': 0.3077029437237213 }] """ assert 0 <= iou_threshold <= 1 gt_by_class_name = group_by_key(gt, "name") pred_by_class_name = group_by_key(predictions, "name") average_precisions = np.zeros(len(class_names)) for class_id, class_name in enumerate(class_names): if class_name in pred_by_class_name: recalls, precisions, average_precision = recall_precision( gt_by_class_name[class_name], pred_by_class_name[class_name], iou_threshold ) average_precisions[class_id] = average_precision return average_precisions def get_class_names(gt: dict) -> list: """Get sorted list of class names. Args: gt: Returns: Sorted list of class names. """ return sorted(list(set([x["name"] for x in gt]))) if __name__ == "__main__": parser = argparse.ArgumentParser() arg = parser.add_argument arg("-p", "--pred_file", type=str, help="Path to the predictions file.", required=True) arg("-g", "--gt_file", type=str, help="Path to the ground truth file.", required=True) arg("-t", "--iou_threshold", type=float, help="iou threshold", default=0.5) args = parser.parse_args() gt_path = Path(args.gt_file) pred_path = Path(args.pred_file) with open(args.pred_file) as f: predictions = json.load(f) with open(args.gt_file) as f: gt = json.load(f) class_names = get_class_names(gt) print("Class_names = ", class_names) average_precisions = get_average_precisions(gt, predictions, class_names, args.iou_threshold) mAP = np.mean(average_precisions) print("Average per class mean average precision = ", mAP) for class_id in sorted(list(zip(class_names, average_precisions.flatten().tolist()))): print(class_id)