mlebench/competitions/3d-object-detection-for-autonomous-vehicles/mAP_evaluation.py (215 lines of code) (raw):
# Verbatim from: https://github.com/lyft/nuscenes-devkit/blob/master/lyft_dataset_sdk/eval/detection/mAP_evaluation.py
"""
mAP 3D calculation for the data in nuScenes format.
The intput files expected to have the format:
Expected fields:
gt = [{
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac',
'translation': [974.2811881299899, 1714.6815014457964, -23.689857123368846],
'size': [1.796, 4.488, 1.664],
'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121],
'name': 'car'
}]
prediction_result = {
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac',
'translation': [971.8343488872263, 1713.6816097857359, -25.82534357061308],
'size': [2.519726579986132, 7.810161372666739, 3.483438286096803],
'rotation': [0.10913582721095375, 0.04099572636992043, 0.01927712319721745, 1.029328402625659],
'name': 'car',
'score': 0.3077029437237213
}
input arguments:
--pred_file: file with predictions
--gt_file: ground truth file
--iou_threshold: IOU threshold
In general we would be interested in average of mAP at thresholds [0.5, 0.55, 0.6, 0.65,...0.95], similar to the
standard COCO => one needs to run this file N times for every IOU threshold independently.
"""
import argparse
import json
from collections import defaultdict
from pathlib import Path
import numpy as np
from pyquaternion import Quaternion
from shapely.geometry import Polygon
class Box3D:
"""Data class used during detection evaluation. Can be a prediction or ground truth."""
def __init__(self, **kwargs):
sample_token = kwargs["sample_token"]
translation = kwargs["translation"]
size = kwargs["size"]
rotation = kwargs["rotation"]
name = kwargs["name"]
score = kwargs.get("score", -1)
if not isinstance(sample_token, str):
raise TypeError("Sample_token must be a string!")
if not len(translation) == 3:
raise ValueError("Translation must have 3 elements!")
if np.any(np.isnan(translation)):
raise ValueError("Translation may not be NaN!")
if not len(size) == 3:
raise ValueError("Size must have 3 elements!")
if np.any(np.isnan(size)):
raise ValueError("Size may not be NaN!")
if not len(rotation) == 4:
raise ValueError("Rotation must have 4 elements!")
if np.any(np.isnan(rotation)):
raise ValueError("Rotation may not be NaN!")
if name is None:
raise ValueError("Name cannot be empty!")
# Assign.
self.sample_token = sample_token
self.translation = translation
self.size = size
self.volume = np.prod(self.size)
self.score = score
assert np.all([x > 0 for x in size])
self.rotation = rotation
self.name = name
self.quaternion = Quaternion(self.rotation)
self.width, self.length, self.height = size
self.center_x, self.center_y, self.center_z = self.translation
self.min_z = self.center_z - self.height / 2
self.max_z = self.center_z + self.height / 2
self.ground_bbox_coords = None
self.ground_bbox_coords = self.get_ground_bbox_coords()
@staticmethod
def check_orthogonal(a, b, c):
"""Check that vector (b - a) is orthogonal to the vector (c - a)."""
return np.isclose((b[0] - a[0]) * (c[0] - a[0]) + (b[1] - a[1]) * (c[1] - a[1]), 0)
def get_ground_bbox_coords(self):
if self.ground_bbox_coords is not None:
return self.ground_bbox_coords
return self.calculate_ground_bbox_coords()
def calculate_ground_bbox_coords(self):
"""We assume that the 3D box has lower plane parallel to the ground.
Returns: Polygon with 4 points describing the base.
"""
if self.ground_bbox_coords is not None:
return self.ground_bbox_coords
rotation_matrix = self.quaternion.rotation_matrix
cos_angle = rotation_matrix[0, 0]
sin_angle = rotation_matrix[1, 0]
point_0_x = self.center_x + self.length / 2 * cos_angle + self.width / 2 * sin_angle
point_0_y = self.center_y + self.length / 2 * sin_angle - self.width / 2 * cos_angle
point_1_x = self.center_x + self.length / 2 * cos_angle - self.width / 2 * sin_angle
point_1_y = self.center_y + self.length / 2 * sin_angle + self.width / 2 * cos_angle
point_2_x = self.center_x - self.length / 2 * cos_angle - self.width / 2 * sin_angle
point_2_y = self.center_y - self.length / 2 * sin_angle + self.width / 2 * cos_angle
point_3_x = self.center_x - self.length / 2 * cos_angle + self.width / 2 * sin_angle
point_3_y = self.center_y - self.length / 2 * sin_angle - self.width / 2 * cos_angle
point_0 = point_0_x, point_0_y
point_1 = point_1_x, point_1_y
point_2 = point_2_x, point_2_y
point_3 = point_3_x, point_3_y
assert self.check_orthogonal(point_0, point_1, point_3)
assert self.check_orthogonal(point_1, point_0, point_2)
assert self.check_orthogonal(point_2, point_1, point_3)
assert self.check_orthogonal(point_3, point_0, point_2)
self.ground_bbox_coords = Polygon(
[
(point_0_x, point_0_y),
(point_1_x, point_1_y),
(point_2_x, point_2_y),
(point_3_x, point_3_y),
(point_0_x, point_0_y),
]
)
return self.ground_bbox_coords
def get_height_intersection(self, other):
min_z = max(other.min_z, self.min_z)
max_z = min(other.max_z, self.max_z)
return max(0, max_z - min_z)
def get_area_intersection(self, other) -> float:
result = self.ground_bbox_coords.intersection(other.ground_bbox_coords).area
assert result <= self.width * self.length
return result
def get_intersection(self, other) -> float:
height_intersection = self.get_height_intersection(other)
area_intersection = self.ground_bbox_coords.intersection(other.ground_bbox_coords).area
return height_intersection * area_intersection
def get_iou(self, other):
intersection = self.get_intersection(other)
union = self.volume + other.volume - intersection
iou = np.clip(intersection / union, 0, 1)
return iou
def __repr__(self):
return str(self.serialize())
def serialize(self) -> dict:
"""Returns: Serialized instance as dict."""
return {
"sample_token": self.sample_token,
"translation": self.translation,
"size": self.size,
"rotation": self.rotation,
"name": self.name,
"volume": self.volume,
"score": self.score,
}
def group_by_key(detections, key):
groups = defaultdict(list)
for detection in detections:
groups[detection[key]].append(detection)
return groups
def wrap_in_box(input):
result = {}
for key, value in input.items():
result[key] = [Box3D(**x) for x in value]
return result
def get_envelope(precisions):
"""Compute the precision envelope.
Args:
precisions:
Returns:
"""
for i in range(precisions.size - 1, 0, -1):
precisions[i - 1] = np.maximum(precisions[i - 1], precisions[i])
return precisions
def get_ap(recalls, precisions):
"""Calculate average precision.
Args:
recalls:
precisions: Returns (float): average precision.
Returns:
"""
# correct AP calculation
# first append sentinel values at the end
recalls = np.concatenate(([0.0], recalls, [1.0]))
precisions = np.concatenate(([0.0], precisions, [0.0]))
precisions = get_envelope(precisions)
# to calculate area under PR curve, look for points where X axis (recall) changes value
i = np.where(recalls[1:] != recalls[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((recalls[i + 1] - recalls[i]) * precisions[i + 1])
return ap
def get_ious(gt_boxes, predicted_box):
return [predicted_box.get_iou(x) for x in gt_boxes]
def recall_precision(gt, predictions, iou_threshold):
num_gts = len(gt)
image_gts = group_by_key(gt, "sample_token")
image_gts = wrap_in_box(image_gts)
sample_gt_checked = {
sample_token: np.zeros(len(boxes)) for sample_token, boxes in image_gts.items()
}
predictions = sorted(predictions, key=lambda x: x["score"], reverse=True)
# go down dets and mark TPs and FPs
num_predictions = len(predictions)
tp = np.zeros(num_predictions)
fp = np.zeros(num_predictions)
for prediction_index, prediction in enumerate(predictions):
predicted_box = Box3D(**prediction)
sample_token = prediction["sample_token"]
max_overlap = -np.inf
jmax = -1
try:
gt_boxes = image_gts[sample_token] # gt_boxes per sample
gt_checked = sample_gt_checked[sample_token] # gt flags per sample
except KeyError:
gt_boxes = []
gt_checked = None
if len(gt_boxes) > 0:
overlaps = get_ious(gt_boxes, predicted_box)
max_overlap = np.max(overlaps)
jmax = np.argmax(overlaps)
if max_overlap > iou_threshold:
if gt_checked[jmax] == 0:
tp[prediction_index] = 1.0
gt_checked[jmax] = 1
else:
fp[prediction_index] = 1.0
else:
fp[prediction_index] = 1.0
# compute precision recall
fp = np.cumsum(fp, axis=0)
tp = np.cumsum(tp, axis=0)
recalls = tp / float(num_gts)
assert np.all(0 <= recalls) & np.all(recalls <= 1)
# avoid divide by zero in case the first detection matches a difficult ground truth
precisions = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
assert np.all(0 <= precisions) & np.all(precisions <= 1)
ap = get_ap(recalls, precisions)
return recalls, precisions, ap
def get_average_precisions(
gt: list, predictions: list, class_names: list, iou_threshold: float
) -> np.array:
"""Returns an array with an average precision per class.
Args:
gt: list of dictionaries in the format described below.
predictions: list of dictionaries in the format described below.
class_names: list of the class names.
iou_threshold: IOU threshold used to calculate TP / FN
Returns an array with an average precision per class.
Ground truth and predictions should have schema:
gt = [{
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac',
'translation': [974.2811881299899, 1714.6815014457964, -23.689857123368846],
'size': [1.796, 4.488, 1.664],
'rotation': [0.14882026466054782, 0, 0, 0.9888642620837121],
'name': 'car'
}]
predictions = [{
'sample_token': '0f0e3ce89d2324d8b45aa55a7b4f8207fbb039a550991a5149214f98cec136ac',
'translation': [971.8343488872263, 1713.6816097857359, -25.82534357061308],
'size': [2.519726579986132, 7.810161372666739, 3.483438286096803],
'rotation': [0.10913582721095375, 0.04099572636992043, 0.01927712319721745, 1.029328402625659],
'name': 'car',
'score': 0.3077029437237213
}]
"""
assert 0 <= iou_threshold <= 1
gt_by_class_name = group_by_key(gt, "name")
pred_by_class_name = group_by_key(predictions, "name")
average_precisions = np.zeros(len(class_names))
for class_id, class_name in enumerate(class_names):
if class_name in pred_by_class_name:
recalls, precisions, average_precision = recall_precision(
gt_by_class_name[class_name], pred_by_class_name[class_name], iou_threshold
)
average_precisions[class_id] = average_precision
return average_precisions
def get_class_names(gt: dict) -> list:
"""Get sorted list of class names.
Args:
gt:
Returns: Sorted list of class names.
"""
return sorted(list(set([x["name"] for x in gt])))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("-p", "--pred_file", type=str, help="Path to the predictions file.", required=True)
arg("-g", "--gt_file", type=str, help="Path to the ground truth file.", required=True)
arg("-t", "--iou_threshold", type=float, help="iou threshold", default=0.5)
args = parser.parse_args()
gt_path = Path(args.gt_file)
pred_path = Path(args.pred_file)
with open(args.pred_file) as f:
predictions = json.load(f)
with open(args.gt_file) as f:
gt = json.load(f)
class_names = get_class_names(gt)
print("Class_names = ", class_names)
average_precisions = get_average_precisions(gt, predictions, class_names, args.iou_threshold)
mAP = np.mean(average_precisions)
print("Average per class mean average precision = ", mAP)
for class_id in sorted(list(zip(class_names, average_precisions.flatten().tolist()))):
print(class_id)