mlebench/competitions/ranzcr-clip-catheter-line-classification/prepare.py (37 lines of code) (raw):
import shutil
from pathlib import Path
from sklearn.model_selection import train_test_split
from mlebench.utils import read_csv
from .classes import CLASSES
def prepare(raw: Path, public: Path, private: Path):
# Create train, test from train split
old_train = read_csv(raw / "train.csv")
new_train, new_test = train_test_split(old_train, test_size=0.1, random_state=0)
old_train_annotations = read_csv(raw / "train_annotations.csv")
old_train_uids = old_train_annotations["StudyInstanceUID"]
new_train_uids = new_train["StudyInstanceUID"]
is_in_new_train = old_train_uids.isin(new_train_uids)
new_train_annotations = old_train_annotations[is_in_new_train]
(public / "train").mkdir(exist_ok=True)
(public / "test").mkdir(exist_ok=True)
for file_id in new_train["StudyInstanceUID"]:
shutil.copyfile(
src=raw / "train" / f"{file_id}.jpg",
dst=public / "train" / f"{file_id}.jpg",
)
for file_id in new_test["StudyInstanceUID"]:
shutil.copyfile(
src=raw / "train" / f"{file_id}.jpg",
dst=public / "test" / f"{file_id}.jpg",
)
assert len(list(public.glob("train/*.jpg"))) == len(
new_train
), f"Expected {len(new_train)} files in public train, got {len(list(public.glob('train/*.jpg')))}"
assert len(list(public.glob("test/*.jpg"))) == len(
new_test
), f"Expected {len(new_test)} files in public test, got {len(list(public.glob('test/*.jpg')))}"
# Create a sample submission file
submission_df = new_test[["StudyInstanceUID"] + CLASSES]
submission_df[CLASSES] = 0
# Copy over files
new_train.to_csv(public / "train.csv", index=False)
new_train_annotations.to_csv(public / "train_annotations.csv", index=False)
new_test.to_csv(private / "test.csv", index=False)
submission_df.to_csv(public / "sample_submission.csv", index=False)