mlebench/competitions/ranzcr-clip-catheter-line-classification/prepare.py (37 lines of code) (raw):

import shutil from pathlib import Path from sklearn.model_selection import train_test_split from mlebench.utils import read_csv from .classes import CLASSES def prepare(raw: Path, public: Path, private: Path): # Create train, test from train split old_train = read_csv(raw / "train.csv") new_train, new_test = train_test_split(old_train, test_size=0.1, random_state=0) old_train_annotations = read_csv(raw / "train_annotations.csv") old_train_uids = old_train_annotations["StudyInstanceUID"] new_train_uids = new_train["StudyInstanceUID"] is_in_new_train = old_train_uids.isin(new_train_uids) new_train_annotations = old_train_annotations[is_in_new_train] (public / "train").mkdir(exist_ok=True) (public / "test").mkdir(exist_ok=True) for file_id in new_train["StudyInstanceUID"]: shutil.copyfile( src=raw / "train" / f"{file_id}.jpg", dst=public / "train" / f"{file_id}.jpg", ) for file_id in new_test["StudyInstanceUID"]: shutil.copyfile( src=raw / "train" / f"{file_id}.jpg", dst=public / "test" / f"{file_id}.jpg", ) assert len(list(public.glob("train/*.jpg"))) == len( new_train ), f"Expected {len(new_train)} files in public train, got {len(list(public.glob('train/*.jpg')))}" assert len(list(public.glob("test/*.jpg"))) == len( new_test ), f"Expected {len(new_test)} files in public test, got {len(list(public.glob('test/*.jpg')))}" # Create a sample submission file submission_df = new_test[["StudyInstanceUID"] + CLASSES] submission_df[CLASSES] = 0 # Copy over files new_train.to_csv(public / "train.csv", index=False) new_train_annotations.to_csv(public / "train_annotations.csv", index=False) new_test.to_csv(private / "test.csv", index=False) submission_df.to_csv(public / "sample_submission.csv", index=False)