mlebench/competitions/rsna-miccai-brain-tumor-radiogenomic-classification/prepare.py (35 lines of code) (raw):
import shutil
from pathlib import Path
import numpy as np
from sklearn.model_selection import train_test_split
from mlebench.utils import read_csv
def prepare(raw: Path, public: Path, private: Path):
# Create train and test splits from train set
old_train = read_csv(raw / "train_labels.csv", dtype={"BraTS21ID": str, "MGMT_value": int})
new_train, new_test = train_test_split(old_train, test_size=0.1, random_state=0)
# Copy over images
(public / "train").mkdir(exist_ok=True)
for file_id in new_train["BraTS21ID"]:
(public / "train" / file_id).mkdir(exist_ok=True)
shutil.copytree(
src=raw / "train" / file_id,
dst=public / "train" / file_id,
dirs_exist_ok=True,
)
assert len(list(public.glob("train/*"))) == len(
new_train
), "Public train should have the same number of images as the train set"
(public / "test").mkdir(exist_ok=True)
for file_id in new_test["BraTS21ID"]:
(public / "test" / file_id).mkdir(exist_ok=True)
shutil.copytree(
src=raw / "train" / file_id,
dst=public / "test" / file_id,
dirs_exist_ok=True,
)
assert len(list(public.glob("test/*"))) == len(
new_test
), "Public train should have the same number of images as the train set"
# Create a sample submission file
submission_df = new_test.copy()
submission_df["MGMT_value"] = 0.5
# Copy over files
new_train.to_csv(public / "train_labels.csv", index=False)
new_test.to_csv(private / "test.csv", index=False)
submission_df.to_csv(public / "sample_submission.csv", index=False)