gym/gym/envs/parameter_tuning/convergence.py [160:180]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                         self.previous_acc])

    def data_mix(self):

        # randomly choose dataset
        dataset = random.choice(['mnist', 'cifar10', 'cifar100'])#

        n_labels = 10

        if dataset == "mnist":
            data = mnist.load_data()

        if dataset == "cifar10":
            data = cifar10.load_data()

        if dataset == "cifar100":
            data = cifar100.load_data()
            n_labels = 100

        # Choose dataset size. This affects regularization needed
        r = np.random.rand()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



gym/gym/envs/parameter_tuning/train_deep_cnn.py [122:142]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                         self.previous_acc])

    def data_mix(self):

        # randomly choose dataset
        dataset = random.choice(['mnist', 'cifar10', 'cifar100'])  #

        n_labels = 10

        if dataset == "mnist":
            data = mnist.load_data()

        if dataset == "cifar10":
            data = cifar10.load_data()

        if dataset == "cifar100":
            data = cifar100.load_data()
            n_labels = 100

        # Choose dataset size. This affects regularization needed
        r = np.random.rand()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



