def train_blueprint()

in gym/gym/envs/parameter_tuning/train_deep_cnn.py [0:0]


    def train_blueprint(self, lr, decay, momentum, batch_size, l1, l2, convs, fcs):

        X, Y, Xv, Yv = self.data
        nb_classes = self.nb_classes

        reg = WeightRegularizer()

        # a hack to make regularization variable
        reg.l1 = K.variable(0.0)
        reg.l2 = K.variable(0.0)

        # input square image dimensions
        img_rows, img_cols = X.shape[-1], X.shape[-1]
        img_channels = X.shape[1]

        # convert class vectors to binary class matrices
        Y = np_utils.to_categorical(Y, nb_classes)
        Yv = np_utils.to_categorical(Yv, nb_classes)

        # here definition of the model happens
        model = Sequential()

        has_convs = False
        # create all convolutional layers
        for val, use in convs:

            # Size of convolutional layer
            cnvSz = int(val * 127) + 1

            if use < 0.5:
                continue
            has_convs = True
            model.add(Convolution2D(cnvSz, 3, 3, border_mode='same',
                                    input_shape=(img_channels, img_rows, img_cols),
                                    W_regularizer=reg,
                                    b_regularizer=reg))
            model.add(Activation('relu'))

            model.add(MaxPooling2D(pool_size=(2, 2)))
            # model.add(Dropout(0.25))

        if has_convs:
            model.add(Flatten())
        else:
            model.add(Flatten(input_shape=(img_channels, img_rows, img_cols)))  # avoid excetpions on no convs

        # create all fully connected layers
        for val, use in fcs:

            if use < 0.5:
                continue

            # choose fully connected layer size
            densesz = int(1023 * val) + 1

            model.add(Dense(densesz,
                            W_regularizer=reg,
                            b_regularizer=reg))
            model.add(Activation('relu'))
            # model.add(Dropout(0.5))

        model.add(Dense(nb_classes,
                        W_regularizer=reg,
                        b_regularizer=reg))
        model.add(Activation('softmax'))

        # let's train the model using SGD + momentum (how original).
        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=sgd,
                      metrics=['accuracy'])

        X = X.astype('float32')
        Xv = Xv.astype('float32')
        X /= 255
        Xv /= 255

        model = model
        sgd = sgd
        reg = reg

        # set parameters of training step

        sgd.lr.set_value(lr)
        sgd.decay.set_value(decay)
        sgd.momentum.set_value(momentum)

        reg.l1.set_value(l1)
        reg.l2.set_value(l2)

        # train model for one epoch_idx
        H = model.fit(X, Y,
                      batch_size=int(batch_size),
                      nb_epoch=10,
                      shuffle=True)

        diverged = math.isnan(H.history['loss'][-1])
        acc = 0.0

        if not diverged:
            _, acc = model.evaluate(Xv, Yv)

        return diverged, acc