in gym/gym/envs/mujoco/humanoid_seq.py [0:0]
def _step(self, a):
if self.count % 250 == 0:
self.current = self.realgoal[int(self.count / 250)];
# print("current is %d" % self.current)
self.count += 1
pos_before = mass_center(self.model)
height_before = self.model.data.qpos[2][0]
self.do_simulation(a, self.frame_skip)
height_after = self.model.data.qpos[2][0]
iq = np.copy(self.model.data.qpos)[:,0]
iv = np.copy(self.model.data.qvel)[:,0]
iq[-1] = 30
self.set_state(iq, iv)
if self.current == 0: # crawling
pos_after = mass_center(self.model)
alive_bonus = 5.0
data = self.model.data
lin_vel_cost = 0.25 * (pos_after - pos_before) / self.model.opt.timestep
quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()
quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum()
quad_impact_cost = min(quad_impact_cost, 10)
reward = 0 - quad_ctrl_cost - quad_impact_cost
qpos = self.model.data.qpos
if bool((qpos[2] > 1.0)):
reward += (height_before - height_after) / self.model.opt.timestep
else:
reward += alive_bonus + lin_vel_cost
done = False
elif self.current == 1: # walking
pos_after = mass_center(self.model)
alive_bonus = 5.0
data = self.model.data
lin_vel_cost = 0.25 * (pos_after - pos_before) / self.model.opt.timestep
quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()
quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum()
quad_impact_cost = min(quad_impact_cost, 10)
reward = 0 - quad_ctrl_cost - quad_impact_cost
qpos = self.model.data.qpos
if bool((qpos[2] < 1.0)):
reward += (height_after - height_before) / self.model.opt.timestep
else:
reward += alive_bonus + lin_vel_cost
# done = bool((qpos[2] < 1.0))
done = False
# print(qpos[2])
# if self.count % 10 == 0:
# print(reward)
# print((height_before - height_after) / self.model.opt.timestep)
return self._get_obs(), reward, done, {}