def _create_track()

in gym/gym/envs/box2d/car_racing.py [0:0]


    def _create_track(self):
        CHECKPOINTS = 12

        # Create checkpoints
        checkpoints = []
        for c in range(CHECKPOINTS):
            alpha = 2*math.pi*c/CHECKPOINTS + self.np_random.uniform(0, 2*math.pi*1/CHECKPOINTS)
            rad = self.np_random.uniform(TRACK_RAD/3, TRACK_RAD)
            if c==0:
                alpha = 0
                rad = 1.5*TRACK_RAD
            if c==CHECKPOINTS-1:
                alpha = 2*math.pi*c/CHECKPOINTS
                self.start_alpha = 2*math.pi*(-0.5)/CHECKPOINTS
                rad = 1.5*TRACK_RAD
            checkpoints.append( (alpha, rad*math.cos(alpha), rad*math.sin(alpha)) )

        #print "\n".join(str(h) for h in checkpoints)
        #self.road_poly = [ (    # uncomment this to see checkpoints
        #    [ (tx,ty) for a,tx,ty in checkpoints ],
        #    (0.7,0.7,0.9) ) ]
        self.road = []

        # Go from one checkpoint to another to create track
        x, y, beta = 1.5*TRACK_RAD, 0, 0
        dest_i = 0
        laps = 0
        track = []
        no_freeze = 2500
        visited_other_side = False
        while 1:
            alpha = math.atan2(y, x)
            if visited_other_side and alpha > 0:
                laps += 1
                visited_other_side = False
            if alpha < 0:
                visited_other_side = True
                alpha += 2*math.pi
            while True: # Find destination from checkpoints
                failed = True
                while True:
                    dest_alpha, dest_x, dest_y = checkpoints[dest_i % len(checkpoints)]
                    if alpha <= dest_alpha:
                        failed = False
                        break
                    dest_i += 1
                    if dest_i % len(checkpoints) == 0: break
                if not failed: break
                alpha -= 2*math.pi
                continue
            r1x = math.cos(beta)
            r1y = math.sin(beta)
            p1x = -r1y
            p1y = r1x
            dest_dx = dest_x - x  # vector towards destination
            dest_dy = dest_y - y
            proj = r1x*dest_dx + r1y*dest_dy  # destination vector projected on rad
            while beta - alpha >  1.5*math.pi: beta -= 2*math.pi
            while beta - alpha < -1.5*math.pi: beta += 2*math.pi
            prev_beta = beta
            proj *= SCALE
            if proj >  0.3: beta -= min(TRACK_TURN_RATE, abs(0.001*proj))
            if proj < -0.3: beta += min(TRACK_TURN_RATE, abs(0.001*proj))
            x += p1x*TRACK_DETAIL_STEP
            y += p1y*TRACK_DETAIL_STEP
            track.append( (alpha,prev_beta*0.5 + beta*0.5,x,y) )
            if laps > 4: break
            no_freeze -= 1
            if no_freeze==0: break
        #print "\n".join([str(t) for t in enumerate(track)])

        # Find closed loop range i1..i2, first loop should be ignored, second is OK
        i1, i2 = -1, -1
        i = len(track)
        while True:
            i -= 1
            if i==0: return False  # Failed
            pass_through_start = track[i][0] > self.start_alpha and track[i-1][0] <= self.start_alpha
            if pass_through_start and i2==-1:
                i2 = i
            elif pass_through_start and i1==-1:
                i1 = i
                break
        print("Track generation: %i..%i -> %i-tiles track" % (i1, i2, i2-i1))
        assert i1!=-1
        assert i2!=-1

        track = track[i1:i2-1]

        first_beta = track[0][1]
        first_perp_x = math.cos(first_beta)
        first_perp_y = math.sin(first_beta)
        # Length of perpendicular jump to put together head and tail
        well_glued_together = np.sqrt(
            np.square( first_perp_x*(track[0][2] - track[-1][2]) ) +
            np.square( first_perp_y*(track[0][3] - track[-1][3]) ))
        if well_glued_together > TRACK_DETAIL_STEP:
            return False

        # Red-white border on hard turns
        border = [False]*len(track)
        for i in range(len(track)):
            good = True
            oneside = 0
            for neg in range(BORDER_MIN_COUNT):
                beta1 = track[i-neg-0][1]
                beta2 = track[i-neg-1][1]
                good &= abs(beta1 - beta2) > TRACK_TURN_RATE*0.2
                oneside += np.sign(beta1 - beta2)
            good &= abs(oneside) == BORDER_MIN_COUNT
            border[i] = good
        for i in range(len(track)):
            for neg in range(BORDER_MIN_COUNT):
                border[i-neg] |= border[i]

        # Create tiles
        for i in range(len(track)):
            alpha1, beta1, x1, y1 = track[i]
            alpha2, beta2, x2, y2 = track[i-1]
            road1_l = (x1 - TRACK_WIDTH*math.cos(beta1), y1 - TRACK_WIDTH*math.sin(beta1))
            road1_r = (x1 + TRACK_WIDTH*math.cos(beta1), y1 + TRACK_WIDTH*math.sin(beta1))
            road2_l = (x2 - TRACK_WIDTH*math.cos(beta2), y2 - TRACK_WIDTH*math.sin(beta2))
            road2_r = (x2 + TRACK_WIDTH*math.cos(beta2), y2 + TRACK_WIDTH*math.sin(beta2))
            t = self.world.CreateStaticBody( fixtures = fixtureDef(
                shape=polygonShape(vertices=[road1_l, road1_r, road2_r, road2_l])
                ))
            t.userData = t
            c = 0.01*(i%3)
            t.color = [ROAD_COLOR[0] + c, ROAD_COLOR[1] + c, ROAD_COLOR[2] + c]
            t.road_visited = False
            t.road_friction = 1.0
            t.fixtures[0].sensor = True
            self.road_poly.append(( [road1_l, road1_r, road2_r, road2_l], t.color ))
            self.road.append(t)
            if border[i]:
                side = np.sign(beta2 - beta1)
                b1_l = (x1 + side* TRACK_WIDTH        *math.cos(beta1), y1 + side* TRACK_WIDTH        *math.sin(beta1))
                b1_r = (x1 + side*(TRACK_WIDTH+BORDER)*math.cos(beta1), y1 + side*(TRACK_WIDTH+BORDER)*math.sin(beta1))
                b2_l = (x2 + side* TRACK_WIDTH        *math.cos(beta2), y2 + side* TRACK_WIDTH        *math.sin(beta2))
                b2_r = (x2 + side*(TRACK_WIDTH+BORDER)*math.cos(beta2), y2 + side*(TRACK_WIDTH+BORDER)*math.sin(beta2))
                self.road_poly.append(( [b1_l, b1_r, b2_r, b2_l], (1,1,1) if i%2==0 else (1,0,0) ))
        self.track = track
        return True