mlsh_code/subpolicy_network.py (46 lines of code) (raw):

import rl_algs.common.tf_util as U import tensorflow as tf import numpy as np import gym from rl_algs.common.distributions import make_pdtype from rl_algs.common.mpi_running_mean_std import RunningMeanStd class SubPolicy(object): def __init__(self, name, ob, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): self.hid_size = hid_size self.num_hid_layers = num_hid_layers self.gaussian_fixed_var = gaussian_fixed_var with tf.variable_scope(name): self.scope = tf.get_variable_scope().name with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=(ob.get_shape()[1],)) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) # obz = ob # value function last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "vffc%i"%(i+1), weight_init=U.normc_initializer(1.0))) self.vpred = U.dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:,0] # sub policy self.pdtype = pdtype = make_pdtype(ac_space) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "pol%i"%(i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = U.dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) self.pdparam = U.concatenate([mean, mean * 0.0 + logstd], axis=1) else: self.pdparam = U.dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(self.pdparam) # sample actions stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred]) def act(self, stochastic, ob): ac1, vpred1 = self._act(stochastic, ob[None]) return ac1[0], vpred1[0] def get_variables(self): return tf.get_collection(tf.GraphKeys.VARIABLES, self.scope) def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def reset(self): with tf.variable_scope(self.scope, reuse=True): varlist = self.get_trainable_variables() initializer = tf.variables_initializer(varlist) U.get_session().run(initializer)