def mat2quat()

in mujoco_worldgen/util/rotation.py [0:0]


def mat2quat(mat):
    """ Convert Rotation Matrix to Quaternion.  See rotation.py for notes """
    mat = np.asarray(mat, dtype=np.float64)
    assert mat.shape[-2:] == (3, 3), "Invalid shape matrix {}".format(mat)

    Qxx, Qyx, Qzx = mat[..., 0, 0], mat[..., 0, 1], mat[..., 0, 2]
    Qxy, Qyy, Qzy = mat[..., 1, 0], mat[..., 1, 1], mat[..., 1, 2]
    Qxz, Qyz, Qzz = mat[..., 2, 0], mat[..., 2, 1], mat[..., 2, 2]
    # Fill only lower half of symmetric matrix
    K = np.zeros(mat.shape[:-2] + (4, 4), dtype=np.float64)
    K[..., 0, 0] = Qxx - Qyy - Qzz
    K[..., 1, 0] = Qyx + Qxy
    K[..., 1, 1] = Qyy - Qxx - Qzz
    K[..., 2, 0] = Qzx + Qxz
    K[..., 2, 1] = Qzy + Qyz
    K[..., 2, 2] = Qzz - Qxx - Qyy
    K[..., 3, 0] = Qyz - Qzy
    K[..., 3, 1] = Qzx - Qxz
    K[..., 3, 2] = Qxy - Qyx
    K[..., 3, 3] = Qxx + Qyy + Qzz
    K /= 3.0
    # TODO: vectorize this -- probably could be made faster
    q = np.empty(K.shape[:-2] + (4,))
    it = np.nditer(q[..., 0], flags=['multi_index'])
    while not it.finished:
        # Use Hermitian eigenvectors, values for speed
        vals, vecs = np.linalg.eigh(K[it.multi_index])
        # Select largest eigenvector, reorder to w,x,y,z quaternion
        q[it.multi_index] = vecs[[3, 0, 1, 2], np.argmax(vals)]
        # Prefer quaternion with positive w
        # (q * -1 corresponds to same rotation as q)
        if q[it.multi_index][0] < 0:
            q[it.multi_index] *= -1
        it.iternext()
    return q