in mujoco_worldgen/util/rotation.py [0:0]
def mat2quat(mat):
""" Convert Rotation Matrix to Quaternion. See rotation.py for notes """
mat = np.asarray(mat, dtype=np.float64)
assert mat.shape[-2:] == (3, 3), "Invalid shape matrix {}".format(mat)
Qxx, Qyx, Qzx = mat[..., 0, 0], mat[..., 0, 1], mat[..., 0, 2]
Qxy, Qyy, Qzy = mat[..., 1, 0], mat[..., 1, 1], mat[..., 1, 2]
Qxz, Qyz, Qzz = mat[..., 2, 0], mat[..., 2, 1], mat[..., 2, 2]
# Fill only lower half of symmetric matrix
K = np.zeros(mat.shape[:-2] + (4, 4), dtype=np.float64)
K[..., 0, 0] = Qxx - Qyy - Qzz
K[..., 1, 0] = Qyx + Qxy
K[..., 1, 1] = Qyy - Qxx - Qzz
K[..., 2, 0] = Qzx + Qxz
K[..., 2, 1] = Qzy + Qyz
K[..., 2, 2] = Qzz - Qxx - Qyy
K[..., 3, 0] = Qyz - Qzy
K[..., 3, 1] = Qzx - Qxz
K[..., 3, 2] = Qxy - Qyx
K[..., 3, 3] = Qxx + Qyy + Qzz
K /= 3.0
# TODO: vectorize this -- probably could be made faster
q = np.empty(K.shape[:-2] + (4,))
it = np.nditer(q[..., 0], flags=['multi_index'])
while not it.finished:
# Use Hermitian eigenvectors, values for speed
vals, vecs = np.linalg.eigh(K[it.multi_index])
# Select largest eigenvector, reorder to w,x,y,z quaternion
q[it.multi_index] = vecs[[3, 0, 1, 2], np.argmax(vals)]
# Prefer quaternion with positive w
# (q * -1 corresponds to same rotation as q)
if q[it.multi_index][0] < 0:
q[it.multi_index] *= -1
it.iternext()
return q