in mae_envs/modules/util.py [0:0]
def rejection_placement(env, placement_fn, floor_size, obj_size, num_tries=10):
'''
Args:
env (gym.Env): environment
placement_fn (function): Function that returns a position on a grid
Args:
grid (np.ndarray): 2D occupancy grid. 1's mean occupied
obj_size_in_cells (int np.ndarray): number of cells in [x, y]
that this object would occupy on the grid. Currently only supports
rectangular object sizes (but so does worldgen)
env.metadata (dict): environment metadata
random_state (np.random.RandomState): numpy random state
Returns: x, y placement position on grid
floor_size (float): size of floor
obj_size (float np.ndarray): [x, y] size of object
num_tries (int): number of tries to place object
Returns: int np.ndarray([x, y]) position on grid or None if no placement was found.
'''
grid = env.placement_grid
grid_size = len(grid)
cell_size = floor_size / grid_size
obj_size_in_cells = np.ceil(obj_size / cell_size).astype(int)
for i in range(num_tries):
if placement_fn is not None:
pos = placement_fn(grid, obj_size_in_cells, env.metadata, env._random_state)
else:
# Assume that we'll always have boundary walls so don't sample there
pos = np.array([env._random_state.randint(1, grid_size - obj_size_in_cells[0] - 1),
env._random_state.randint(1, grid_size - obj_size_in_cells[1] - 1)])
if np.any(grid[pos[0]:pos[0] + obj_size_in_cells[0], pos[1]:pos[1] + obj_size_in_cells[1]]):
continue
else:
extra_room = obj_size_in_cells * cell_size - obj_size
pos_on_floor = pos / grid_size * floor_size
pos_on_floor += env._random_state.uniform([0, 0], extra_room)
placement = pos_on_floor / (floor_size - obj_size)
grid[pos[0]:pos[0] + obj_size_in_cells[0], pos[1]:pos[1] + obj_size_in_cells[1]] = 1
return placement, pos
return None, None