ma_policy/graph_construct.py (228 lines of code) (raw):

import numpy as np import tensorflow as tf from collections import OrderedDict from copy import deepcopy import logging import traceback import sys from ma_policy.variable_schema import VariableSchema, BATCH, TIMESTEPS from ma_policy.util import shape_list from ma_policy.layers import (entity_avg_pooling_masked, entity_max_pooling_masked, entity_concat, concat_entity_masks, residual_sa_block, circ_conv1d) logger = logging.getLogger(__name__) def construct_tf_graph(all_inputs, spec, act, scope='', reuse=False,): ''' Construct tensorflow graph from spec. Args: main_inp (tf) -- input activations other_inp (dict of tf) -- other input activations such as state spec (list of dicts) -- network specification. see Usage below scope (string) -- tf variable scope reuse (bool) -- tensorflow reuse flag Usage: Each layer spec has optional arguments: nodes_in and nodes_in. If these arguments are omitted, then the default in and out nodes will be 'main'. For layers such as concatentation, these arguments must be specified. Dense layer (MLP) -- { 'layer_type': 'dense' 'units': int (number of neurons) 'activation': 'relu', 'tanh', or '' for no activation } LSTM layer -- { 'layer_type': 'lstm' 'units': int (hidden state size) } Concat layer -- Two use cases. First: the first input has one less dimension than the second input. In this case, broadcast the first input along the second to last dimension and concatenated along last dimension Second: Both inputs have the same dimension, and will be concatenated along last dimension { 'layer_type': 'concat' 'nodes_in': ['node_one', 'node_two'] 'nodes_out': ['node_out'] } Entity Concat Layer -- Concatenate along entity dimension (second to last) { 'layer_type': 'entity_concat' 'nodes_in': ['node_one', 'node_two'] 'nodes_out': ['node_out'] } Entity Self Attention -- Self attention over entity dimension (second to last) See policy.utils:residual_sa_block for args { 'layer_type': 'residual_sa_block' 'nodes_in': ['node_one'] 'nodes_out': ['node_out'] ... } Entity Pooling -- Pooling along entity dimension (second to last) { 'layer_type': 'entity_pooling' 'nodes_in': ['node_one', 'node_two'] 'nodes_out': ['node_out'] 'type': (optional string, default 'avg_pooling') type of pooling Current options are 'avg_pooling' and 'max_pooling' } Circular 1d convolution layer (second to last dimension) -- { 'layer_type': 'circ_conv1d', 'filters': number of filters 'kernel_size': kernel size 'activation': 'relu', 'tanh', or '' for no activation } Flatten outer dimension -- Flatten all dimensions higher or equal to 3 (necessary after conv layer) { 'layer_type': 'flatten_outer', } Layernorm -- ''' # Make a new dict to not overwrite input inp = {k: v for k, v in all_inputs.items()} inp['main'] = inp['observation_self'] valid_activations = {'relu': tf.nn.relu, 'tanh': tf.tanh, '': None} state_variables = OrderedDict() logger.info(f"Spec:\n{spec}") entity_locations = {} reset_ops = [] with tf.variable_scope(scope, reuse=reuse): for i, layer in enumerate(spec): try: layer = deepcopy(layer) layer_type = layer.pop('layer_type') extra_layer_scope = layer.pop('scope', '') nodes_in = layer.pop('nodes_in', ['main']) nodes_out = layer.pop('nodes_out', ['main']) with tf.variable_scope(extra_layer_scope, reuse=reuse): if layer_type == 'dense': assert len(nodes_in) == len(nodes_out), f"Dense layer must have same number of nodes in as nodes out. \ Nodes in: {nodes_in}, Nodes out {nodes_out}" layer['activation'] = valid_activations[layer['activation']] layer_name = layer.pop('layer_name', f'dense{i}') for j in range(len(nodes_in)): inp[nodes_out[j]] = tf.layers.dense(inp[nodes_in[j]], name=f'{layer_name}-{j}', kernel_initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse, **layer) elif layer_type == 'lstm': layer_name = layer.pop('layer_name', f'lstm{i}') with tf.variable_scope(layer_name, reuse=reuse): assert len(nodes_in) == len(nodes_out) == 1 cell = tf.contrib.rnn.BasicLSTMCell(layer['units']) initial_state = tf.contrib.rnn.LSTMStateTuple(inp[scope + f'_lstm{i}_state_c'], inp[scope + f'_lstm{i}_state_h']) inp[nodes_out[0]], state_out = tf.nn.dynamic_rnn(cell, inp[nodes_in[0]], initial_state=initial_state) state_variables[scope + f'_lstm{i}_state_c'] = state_out.c state_variables[scope + f'_lstm{i}_state_h'] = state_out.h elif layer_type == 'concat': layer_name = layer.pop('layer_name', f'concat{i}') with tf.variable_scope(layer_name): assert len(nodes_out) == 1, f"Concat op must only have one node out. Nodes Out: {nodes_out}" assert len(nodes_in) == 2, f"Concat op must have two nodes in. Nodes In: {nodes_in}" assert (len(shape_list(inp[nodes_in[0]])) == len(shape_list(inp[nodes_in[1]])) or len(shape_list(inp[nodes_in[0]])) == len(shape_list(inp[nodes_in[1]])) - 1),\ f"shapes were {nodes_in[0]}:{shape_list(inp[nodes_in[0]])}, {nodes_in[1]}:{shape_list(inp[nodes_in[1]])}" inp0, inp1 = inp[nodes_in[0]], inp[nodes_in[1]] # tile inp0 along second to last dimension to match inp1 if len(shape_list(inp[nodes_in[0]])) == len(shape_list(inp1)) - 1: inp0 = tf.expand_dims(inp[nodes_in[0]], -2) tile_dims = [1 for i in range(len(shape_list(inp0)))] tile_dims[-2] = shape_list(inp1)[-2] inp0 = tf.tile(inp0, tile_dims) inp[nodes_out[0]] = tf.concat([inp0, inp1], -1) elif layer_type == 'entity_concat': layer_name = layer.pop('layer_name', f'entity-concat{i}') with tf.variable_scope(layer_name): ec_inps = [inp[node_in] for node_in in nodes_in] inp[nodes_out[0]] = entity_concat(ec_inps) if "masks_in" in layer: masks_in = [inp[_m] if _m is not None else None for _m in layer["masks_in"]] inp[layer["mask_out"]] = concat_entity_masks(ec_inps, masks_in) # Store where the entities are. We'll store with key nodes_out[0] _ent_locs = {} loc = 0 for node_in in nodes_in: shape_in = shape_list(inp[node_in]) n_ent = shape_in[2] if len(shape_in) == 4 else 1 _ent_locs[node_in] = slice(loc, loc + n_ent) loc += n_ent entity_locations[nodes_out[0]] = _ent_locs elif layer_type == 'residual_sa_block': layer_name = layer.pop('layer_name', f'self-attention{i}') with tf.variable_scope(layer_name): assert len(nodes_in) == 1, "self attention should only have one input" sa_inp = inp[nodes_in[0]] mask = inp[layer.pop('mask')] if 'mask' in layer else None internal_layer_name = layer.pop('internal_layer_name', f'residual_sa_block{i}') inp[nodes_out[0]] = residual_sa_block(sa_inp, mask, **layer, scope=internal_layer_name, reuse=reuse) elif layer_type == 'entity_pooling': pool_type = layer.get('type', 'avg_pooling') assert pool_type in ['avg_pooling', 'max_pooling'], f"Pooling type {pool_type} \ not available. Pooling type must be either 'avg_pooling' or 'max_pooling'." layer_name = layer.pop('layer_name', f'entity-{pool_type}-pooling{i}') with tf.variable_scope(layer_name): if 'mask' in layer: mask = inp[layer.pop('mask')] assert mask.get_shape()[-1] == inp[nodes_in[0]].get_shape()[-2], \ f"Outer dim of mask must match second to last dim of input. \ Mask shape: {mask.get_shape()}. Input shape: {inp[nodes_in[0]].get_shape()}" if pool_type == 'avg_pooling': inp[nodes_out[0]] = entity_avg_pooling_masked(inp[nodes_in[0]], mask) elif pool_type == 'max_pooling': inp[nodes_out[0]] = entity_max_pooling_masked(inp[nodes_in[0]], mask) else: if pool_type == 'avg_pooling': inp[nodes_out[0]] = tf.reduce_mean(inp[nodes_in[0]], -2) elif pool_type == 'max_pooling': inp[nodes_out[0]] = tf.reduce_max(inp[nodes_in[0]], -2) elif layer_type == 'circ_conv1d': assert len(nodes_in) == len(nodes_out) == 1, f"Circular convolution layer must have one nodes and one nodes out. \ Nodes in: {nodes_in}, Nodes out {nodes_out}" layer_name = layer.pop('layer_name', f'circ_conv1d{i}') with tf.variable_scope(layer_name, reuse=reuse): inp[nodes_out[0]] = circ_conv1d(inp[nodes_in[0]], **layer) elif layer_type == 'flatten_outer': layer_name = layer.pop('layer_name', f'flatten_outer{i}') with tf.variable_scope(layer_name, reuse=reuse): # flatten all dimensions higher or equal to 3 inp0 = inp[nodes_in[0]] inp0_shape = shape_list(inp0) inp[nodes_out[0]] = tf.reshape(inp0, shape=inp0_shape[0:2] + [np.prod(inp0_shape[2:])]) elif layer_type == "layernorm": layer_name = layer.pop('layer_name', f'layernorm{i}') with tf.variable_scope(layer_name, reuse=reuse): inp[nodes_out[0]] = tf.contrib.layers.layer_norm(inp[nodes_in[0]], begin_norm_axis=2) else: raise NotImplementedError(f"Layer type -- {layer_type} -- not yet implemented") except Exception: traceback.print_exc(file=sys.stdout) print(f"Error in {layer_type} layer: \n{layer}\nNodes in: {nodes_in}, Nodes out: {nodes_out}") sys.exit() return inp, state_variables, reset_ops def construct_schemas_zero_state(spec, ob_space, scope=''): ''' Takes a network spec (as specified in construct_tf_graph docstring) and returns input schemas and zero states. ''' schemas = OrderedDict() zero_states = OrderedDict() for i, layer in enumerate(spec): layer = deepcopy(layer) layer_type = layer.pop('layer_type') if layer_type == 'lstm': size = tf.contrib.rnn.BasicLSTMCell(layer['units']).state_size schemas[scope + f'_lstm{i}_state_c'] = VariableSchema(shape=[BATCH, size.c], dtype=tf.float32) schemas[scope + f'_lstm{i}_state_h'] = VariableSchema(shape=[BATCH, size.h], dtype=tf.float32) zero_states[scope + f'_lstm{i}_state_c'] = np.expand_dims(np.zeros(size.c, dtype=np.float32), 0) zero_states[scope + f'_lstm{i}_state_h'] = np.expand_dims(np.zeros(size.h, dtype=np.float32), 0) return schemas, zero_states