mae_envs/modules/util.py (104 lines of code) (raw):
import numpy as np
from mujoco_worldgen.parser import parse_file
def get_size_from_xml(obj):
'''
Args:
obj (worldgen.Obj): worldgen object
Returns: size of object annotation:outerbound if it exists, None if it doesn't
'''
outer_bound = None
for body in parse_file(obj._generate_xml_path())['worldbody']['body']:
if body.get('@name', '') == 'annotation:outer_bound':
outer_bound = body
if outer_bound is None:
return None
else:
return outer_bound['geom'][0]['@size'][:2] * 2
def rejection_placement(env, placement_fn, floor_size, obj_size, num_tries=10):
'''
Args:
env (gym.Env): environment
placement_fn (function): Function that returns a position on a grid
Args:
grid (np.ndarray): 2D occupancy grid. 1's mean occupied
obj_size_in_cells (int np.ndarray): number of cells in [x, y]
that this object would occupy on the grid. Currently only supports
rectangular object sizes (but so does worldgen)
env.metadata (dict): environment metadata
random_state (np.random.RandomState): numpy random state
Returns: x, y placement position on grid
floor_size (float): size of floor
obj_size (float np.ndarray): [x, y] size of object
num_tries (int): number of tries to place object
Returns: int np.ndarray([x, y]) position on grid or None if no placement was found.
'''
grid = env.placement_grid
grid_size = len(grid)
cell_size = floor_size / grid_size
obj_size_in_cells = np.ceil(obj_size / cell_size).astype(int)
for i in range(num_tries):
if placement_fn is not None:
pos = placement_fn(grid, obj_size_in_cells, env.metadata, env._random_state)
else:
# Assume that we'll always have boundary walls so don't sample there
pos = np.array([env._random_state.randint(1, grid_size - obj_size_in_cells[0] - 1),
env._random_state.randint(1, grid_size - obj_size_in_cells[1] - 1)])
if np.any(grid[pos[0]:pos[0] + obj_size_in_cells[0], pos[1]:pos[1] + obj_size_in_cells[1]]):
continue
else:
extra_room = obj_size_in_cells * cell_size - obj_size
pos_on_floor = pos / grid_size * floor_size
pos_on_floor += env._random_state.uniform([0, 0], extra_room)
placement = pos_on_floor / (floor_size - obj_size)
grid[pos[0]:pos[0] + obj_size_in_cells[0], pos[1]:pos[1] + obj_size_in_cells[1]] = 1
return placement, pos
return None, None
def uniform_placement(grid, obj_size, metadata, random_state):
grid_size = len(grid)
pos = np.array([random_state.randint(1, grid_size - obj_size[0] - 1),
random_state.randint(1, grid_size - obj_size[1] - 1)])
return pos
def close_to_other_object_placement(object_type, object_index, radius_key):
def close_placement_fn(grid, obj_size, metadata, random_state):
init_pos_key = f"{object_type}{object_index}_initpos"
assert init_pos_key in metadata, \
f"First object position must be specified in metadata['{init_pos_key}']"
assert radius_key in metadata, \
f"metadata['{radius_key}'] mus be specified."
grid_size = len(grid)
anchor_obj_pos = metadata[f"{init_pos_key}"]
rad_in_cells = metadata[radius_key]
distr_limits_min = np.maximum(1, anchor_obj_pos - rad_in_cells)
distr_limits_max = np.minimum(grid_size - 1, anchor_obj_pos + rad_in_cells)
pos = np.array([random_state.randint(distr_limits_min[0], distr_limits_max[0]),
random_state.randint(distr_limits_min[1], distr_limits_max[1])])
return pos
return close_placement_fn
def uniform_placement_middle(area_side_length_fraction):
'''
Creates a sampling function that samples object position uniformly within the
middle of the playing area. E.g. if the playing area is
------
|AAAA|
|ABBA|
|ABBA|
|AAAA|
------
then uniform_placement_middle(0.5) will returned a function that samples the object position
from any of the B cells.
Args:
area_side_length_fraction (float, between 0 and 1): Length of the sides of the middle
square being sampled from, as fraction of the overall playing field
'''
def uniform_placement_middle_fn(grid, obj_size, metadata, random_state):
grid_size = len(grid)
distr_limits_min = ((grid_size - obj_size) * (1 - area_side_length_fraction) / 2 + area_side_length_fraction).astype(int)
distr_limits_max = ((grid_size - obj_size) * (1 + area_side_length_fraction) / 2 - area_side_length_fraction).astype(int)
pos = np.array([random_state.randint(distr_limits_min[0], distr_limits_max[0]),
random_state.randint(distr_limits_min[1], distr_limits_max[1])])
return pos
return uniform_placement_middle_fn
def center_placement(grid, obj_size_in_cells, metadata, random_state):
half_grid_size = int(len(grid) / 2)
pos = np.array([half_grid_size - int(obj_size_in_cells[0]/2),
half_grid_size - int(obj_size_in_cells[1]/2)])
return pos